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Chapter 10: Complex Numbers

10.1 Introduction

In this chapter, we will discuss complex numbers and their properties. One main reason for
introducing complex numbers is to solve polynomials. We learned some quadratic polyno-
mials do not have a real root, for examples,

x2 + 1.

The number i is introduced to solve this equation.

Definition 1. Define i to be a number such that

i2 = −1.

A complex number is a number of the form z = a+ bi, where a, b ∈ R.
The real and imaginary part of z is defined to be Re(z) = a and Im(z) = b respecti-
vely. z is said to be purely imaginary if Re(z) = 0.

Remark. Real numbers are also complex numbers, They are those with zero imaginary part.

Arithmetic Operations of Complex numbers

Addition, subtraction, multiplication, division of complex numbers are defined.

For complex numbers a+ bi and c+ di,

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i

(a+ bi)− (c+ di) = (a− c) + (b− d)i

(a+ bi) · (c+ di) = ac+ adi+ bci+ bdi2 = (ac− bd) + (ad+ bc)i

a+ bi

c+ di
=

(a+ bi)(c− di)
(c+ di)(c− di)

=
(ac+ bd) + (bc− ad)i

c2 + d2
for c+ di 6= 0.

10-1
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These arithmetic operations on complex numbers share properties similar to those on real
numbers.

Proposition 1. Let z1, z2, z3 be complex numbers, then

• (z1 + z2) + z3 = z1 + (z2 + z3)

• z1 + z2 = z2 + z1

• z1 + 0 = z1

• (z1z2)z3 = z1(z2z3)

• z1z2 = z2z1

• 0z1 = 0

• 1z1 = z1

• z1(z2 + z3) = z1z2 + z1z3.

Example 1. Express the followings in the form of a+ bi

a. [(1 + 2i)− (4− 3i)] · (−1− i) b.
−1 + 4i

(2 + i) + (4− 4i)

Solution. a.

[(1 + 2i)− (4− 3i)] · (−1− i) =(−3 + 5i) · (−1− i)
=3− 5i+ 3i− 5i2

=8− 2i

b.
−1 + 4i

(2 + i) + (4− 4i)
=
−1 + 4i

6− 3i
· 6 + 3i

6 + 3i

=
−6− 12− 3i+ 24i

36 + 9

=− 2

5
+

7

15
i

�

10.2 Argand Diagram

A complex number z = a+bi can be represented by the point or vector (a, b) on a plane. The
plane is called the complex plane or Argand diagram. Addition and subtraction of complex
numbers are similar to those of vectors graphically.

Note that real numbers and purely imaginary numbers are represented by horizontal vectors
and vertical vectors respectively. The horizontal axis is called the real axis and the vertical
axis is called the imaginary axis.
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Example 2. Let z = 3 + 2i, w = 1− i

Conjugate, Modulus and Argument

Definition 2. For z = a+ bi , where a, b ∈ R , define

Conjugate z = a− bi

Modulus |z| =
√
a2 + b2

Argument arg z = θ for z 6= 0, where θ is the angle at the origin,
measured counterclockwisely from the positive real axis
to (a, b) in radian.
Note arg z is only defined up to 2kπ, k ∈ Z, additively.

Principal argument Arg z = θ if θ is an argument of z with −π < θ ≤ π

Example 3. For z = 1 + i,

z = 1− i

|z| =
√

12 + 12 =
√

2

arg z =
π

4

(
or

π

4
+ 2kπ for any k ∈ Z.

)
Arg z =

π

4
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Example 4. For z = −1 + 2i,

z = −1− 2i

|z| =
√

(−1)2 + 22 =
√

5

Arg z =
π

2
+ α =

π

2
+ arctan

1

2

arg z =
π

2
+ arctan

1

2
+ 2kπ for any k ∈ Z.

Proposition 2. For complex numbers z and w,

• z + z = 2 Re z

• z − z = 2i Im z

• zz = |z|2

• (z) = z

• |z| = |z|

• z ± w = z ± w

• zw = z w

•
( z
w

)
=
z

w

• |zw| = |z||w|

•
∣∣∣ z
w

∣∣∣ =
|z|
|w|

Proof of zz = |z|2. Let z = a+ bi where a, b ∈ R. Then

zz = (a+ bi)(a− bi)
= a2 − (bi)2

= a2 − b2i2

= a2 + b2

= |z|2

10.3 Polar form

The complex number cos θ+i sin θ has modulus 1 and argument θ. Conversely, any complex
number with modulus 1 has this form.
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Let z 6= 0. Since |z| is a positive real number,
∣∣∣∣ z|z|

∣∣∣∣ =
|z|
|z|

= 1 and so

z

|z|
= cos θ + i sin θ (*)

where θ = arg
z

|z|
= arg z.

Example 5. For z = 2− i,

Rewriting the equation (*) above, z can be expressed as follows, known as the polar form.

Polar Form For z 6= 0,

z = |z|(cos θ + i sin θ)

where arg z = θ.

Remark. z = a+ bi is called the rectangular form.

Geometrically, |z| and θ = arg z determines the length and the direction of the vector
representing z on the Argand diagram respectively.
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Proposition 3. Let z, w be non-zero complex numbers with polar forms

z = |z|(cosα+ i sinα) and w = |w|(cosβ + i sinβ)

Then we have the following polar forms:

1. z = |z|[cos(−α) + i sin(−α)]

2.
1

z
=

1

|z|
[cos(−α) + i sin(−α)]

3. zw = |z||w|[cos(α+ β) + i sin(α+ β)]

4.
z

w
=
|z|
|w|

[cos(α− β) + i sin(α− β)]

Proof. We will prove properties 2 and 3.

1

z
=

1

|z|
1

cosα+ i sinα
· cosα− i sinα

cosα− i sinα

=
1

|z|
cosα− i sinα

(cosα)2 − (i sinα)2

=
1

|z|
cosα− i sinα

cos2 α+ sin2 α

=
1

|z|
[cos(−α) + i sin(−α)]

zw = |z|(cosα+ i sinα)|w|(cosβ + i sinβ)

= |z||w|[(cosα cosβ − sinα sinβ) + i(cosα sinβ + sinα cosβ)]

= |z||w|[cos(α+ β) + i sin(α+ β)]

Example 6. Consider z = −1 + i. Then z has modulus and principal argument

|z| =
√

(−1)2 + 12 =
√

2 and θ = Arg z =
3π

4
.

Hence, z has polar form

z = |z|(cos θ + i sin θ) =
√

2

(
cos

3π

4
+ i sin

3π

4

)
Then

z = |z|[cos(−θ) + i sin(−θ)] =
√

2

[
cos

(
−3π

4

)
+ i sin

(
−3π

4

)]
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1

z
=

1

|z|
[cos(−θ) + i sin(−θ)] =

1√
2

[
cos

(
−3π

4

)
+ i sin

(
−3π

4

)]

Example 7. Consider z = 1 + i and w = 2i. They have arguments α = arg z =
π

4
and

β = argw =
π

2
. The polar forms of z and w are

z = |z|(cosα+ i sinα) =
√

2
(

cos
π

4
+ i sin

π

4

)
w = |w|(cosβ + i sinβ) = 2

(
cos

π

2
+ i sin

π

2

)
Then

zw = |z||w|[cos(α+ β) + i sin(α+ β)] = 2
√

2

(
cos

3π

4
+ i sin

3π

4

)
z

w
=
|z|
|w|

[cos(α− β) + i sin(α− β)] =

√
2

2

[
cos
(
−π

4

)
+ i sin

(
−π

4

)]
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Corollary 4. Let z, w be non-zero complex numbers. Then

1. arg z = arg
1

z
= − arg z

2. arg(zw) = arg z + argw

3. arg
z

w
= arg z − argw

10.4 De Moivre’s Theorem

In this section, we study powers of complex numbers. The following theorem can be proved
using proposition 3.

Theorem 5 (De Moivre’s theorem). For any integer n,

(cos θ + i sin θ)n = cosnθ + i sinnθ

Proof. The theorem is clearly true for n = 0, 1. For larger n, for example, n = 2, 3, we have

(cos θ + i sin θ)2 = (cos θ + i sin θ)(cos θ + i sin θ)

= cos(θ + θ) + i sin(θ + θ)

= cos 2θ + i sin 2θ

(cos θ + i sin θ)3 = (cos θ + i sin θ)2(cos θ + i sin θ)

= (cos 2θ + i sin 2θ)(cos θ + i sin θ)

= cos(2θ + θ) + i sin(2θ + θ)

= cos 3θ + i sin 3θ

One can prove the theorem for any positive n inductively.
For negative n, let m = −n > 0. By the result above,

(cos θ + i sin θ)n = [(cos θ + i sin θ)−1]m

= [cos(−θ) + i sin(−θ)]m

= cos(−mθ) + i sin(−mθ)
= cosnθ + i sinnθ.

Hence, the theorem is true of any integer n.

By using polar form and de Moivre’s theorem, powers of complex numbers can be easily
computed.
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Example 8. Compute (−1 + i)10.

Solution. In polar form,

−1 + i =
√

2

(
cos

3π

2
+ i sin

3π

2

)
By de Moivre’s theorem,

(−1 + i)10 = (
√

2)10
(

cos
3π

2
+ i sin

3π

2

)10

= 25
[
cos

(
10 · 3π

2

)
+ i sin

(
10 · 3π

2

)]
= 32(cos 15π + i sin 15π)

= 32(−1 + 0i)

= −32

�

By de Moivre’s theorem and binomial theorem, we can express sinnθ or cosnθ in terms of
powers of sin θ or cos θ and vice versa.

Example 9. Express cos 5θ in terms of cos θ.

Solution. Note that

cos 5θ + i sin 5θ =(cos θ + i sin θ)5

= cos5 θ + 5 cos4 θ(i sin θ) + 10 cos3 θ(i sin θ)2

+ 10 cos2 θ(i sin θ)3 + 5 cos θ(i sin θ)4 + (i sin θ)5

Comparing the real parts, we have

cos 5θ = cos5 θ − 10 cos3 θ sin2 θ + 5 cos θ sin4 θ

= cos5 θ − 10 cos3 θ(1− cos2 θ) + 5 cos θ(1− cos2 θ)2

=16 cos5 θ − 20 cos3 θ + 5 cos θ

�

Remark. By comparing the imaginary parts, we have

sin 5θ = 16 sin5 θ − 20 sin3 θ + 5 sin θ

The following formulas are useful for converting powers of sin θ or cos θ to sums of multiples
of sinnθ or cosnθ.
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Let z = cos θ + i sin θ and n be an integer. By de Moivre’s theorem,

zn = cosnθ + i sinnθ

z−n = cos(−nθ) + i sin(−nθ) = cosnθ − i sinnθ

Hence,

zn + z−n = 2 cosnθ and zn − z−n = 2i sinnθ

Example 10. Express sin4 θ in terms of a sum of multiples of sin kθ or cos kθ.

Solution. Let z = cos θ + i sin θ. Then z−1 = cos θ − i sin θ.

2i sin θ = z − z−1

(2i sin θ)4 = (z − z−1)4

= z4 − 4z2 + 6− 4z−2 + z−4

= (z4 + z−4)− 4(z2 + z−2) + 6

16 sin4 θ = 2 cos 4θ − 8 cos 2θ + 6

sin4 θ =
1

8
cos 4θ − 1

2
cos 2θ +

3

8

�

10.5 Roots of unity

Let n be a positive integer. A complex number ω is said to be a n-th root of unity if ωn = 1.
For examples, ±1,±i are the 4-th (fourth) roots of unity.

In general, suppose ω is a n-th root of unity. Then

|ω|n = |ωn| = |1| = 1 =⇒ |ω| = 1

Let ω = cos θ + i sin θ. Then

ωn = (cos θ + i sin θ)n

1 = cosnθ + i sinnθ

By comparing real and imaginary parts,

cosnθ = 1 and sinnθ = 0.
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Hence nθ = 2kπ and so θ =
2kπ

n
, where k is an integer. Since sine and cosine have period

2π, we have the following result.

Proposition 6. The solutions of zn = 1, called the n-th roots of unity, are given by

ω = cos
2kπ

n
+ i sin

2kπ

n
for k = 0, 1, . . . , n− 1.

Note that the n-th roots of unity are on the unit circle centered at 0 and form the vertices of
a regular polygon with n-sides on the Argand diagram.

Example 11. The fifth roots of unity are shown

Proposition 7. If ω is a n-th root of unity and ω 6= 1, then

1 + ω + ω2 + · · ·+ ωn−1 = 0

Proof. If ω is a n-th root of unity, then ωn = 1. Note that

(ω − 1)(ωn−1 + ωn−1 + · · ·+ 1) = ωn − 1 = 0.

Since ω − 1 6= 0, we conclude that 1 + ω + ω2 + · · ·+ ωn−1 = 0.

10.6 Polynomials and Complex roots

Complex numbers are important for solving polynomial equations. Consider a quadratic
polynomial ax2 + bx + c = 0 with real coefficients. Recall that if the discriminant ∆ =
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b2−4ac < 0, then the polynomial has non-real and distinct roots. The roots can be computed
by the quadratic formula

x =
−b±

√
b2 − 4ac

2a
.

Example 12. Solve x2 + 4x+ 7 = 0.

Solution.

x =
−4±

√
42 − 4(1)(7)

2(1)

=
−4±

√
−12

2

=
−4±

√
12i

2

= −2±
√

3i

Alternative Solution. It is also possible to solve the equation by completing the square:

x2 + 4x+ 7 = 0

(x2 + 4x+ 4) + 3 = 0

(x+ 2)2 = −3

x+ 2 = ±
√

3i

x = −2±
√

3i

�

The quadratic formula holds even if a, b, c are complex numbers.

Example 13. Solve (1 + i)x2 − 3x− 1 + i = 0.

Solution.

x =
−(−3)±

√
(−3)2 − 4(1 + i)(−1 + i)

2(1 + i)

=
3±
√

9 + 8

2(1 + i)
· 1− i

1− i

=
3±
√

17

4
(1− i)

�

Remark. In the last example, ∆ = 17 is real and ∆ > 0, the roots are distinct but not real.
For a quadratic polynomial with non-real coefficients, ∆ > 0 does not imply that its roots
are real.
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There are also formulas for computing roots of cubic (deg 3) and quartic (deg 4) polynomi-
als. However, there is no such formula for polynomials of deg ≥ 5 in general. Nevertheless,
it is a fact that these polynomials can be factorized into products of linear factors.

Theorem 8 (Fundamental Theorem of Algebra). Let f(x) be a polynomial with de-
gree ≥ 1. Then f(x) has n complex roots, if counted with multiplicities, and can be
factorized as

f(x) = a(x− c1)(x− c2) · · · (x− cn)

where c1, c2, · · · , cn are the complex roots and a is the leading coefficient.

Example 14. Let f(x) = 2x5 + 20x3 + 50x. As a degree 5 polynomial, f(x) has 5 complex
roots. Note that f(x) can be factorized as

f(x) = 2x(x4 + 10x2 + 25)

= 2x(x2 + 5)2

= 2x(x+
√

5i)2(x−
√

5i)2

Counting with multiplicities, the 5 roots are 0,
√

5i,
√

5i,−
√

5i,−
√

5i. The roots ±
√

5i are
double roots with multiplicity 2.

Real polynomials

A polynomial is called a real polynomial if all its coefficients are real.

Proposition 9. Suppose f(x) is a real polynomial. If c is a root of f(x), then c is
also a root of f(x).

Proof. Let f(x) = anx
n + an−1x

n−1 + · · ·+ a0. Since f(x) is real, ai = ai for i = 0, 1, · · · , n.
Hence,

f(c) = anc
n + an−1c

n−1 + a1c · · ·+ a0

= an c
n + an−1 c

n−1 + · · ·+ a1 c+ a0

= ancn + an−1cn−1 + · · ·+ a0

= f(c) = 0 = 0

It follows that c is a root of f(x).

Note that if c is not real, then

(x− c)(x− c) = x2 − (c+ c)x+ cc = x2 − (2 Re c)x+ |c|2
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is a real polynomial. It is irreducible with discriminant

(−2 Re c)2 − 4(1)|c|2 = −4(|c|2 − (Re c)2) = −4(Im c)2 < 0.

From this observation and the fundamental theorem of algebra, one can obtain the follo-
wing result on the factorization of real polynomials.

Proposition 10. Let f(x) be a real polynomial with degree ≥ 1. Then f(x) can be
factorized as

f(x) = p1(x)p2(x) · · · pk(x)

where each pi(x) is a real polynomial, either linear or irreducible quadratic.

Example 15. Factorize x4 + 1 as a product of real linear and/or irreducible quadratic poly-
nomials.

Solution. Using polar form and de Moivre’s theorem, the roots of x4 + 1 can be found to be

ω1 = cos
π

4
+ i sin

π

4

ω2 = cos
3π

4
+ i sin

3π

4

ω3 = cos
5π

4
+ i sin

5π

4
= ω2

ω4 = cos
7π

4
+ i sin

7π

4
= ω1.

Hence,

x4 + 1 = (x− ω1)(x− ω1)(x− ω2)(x− ω2)

= [x2 − (ω1 + ω1)x+ |ω1|2][x2 − (ω2 + ω2)x+ |ω2|2]

= (x2 −
√

2x+ 1)(x2 +
√

2x+ 1),

where each quadratic factors are irreducible. �

10.7 Euler’s formula

Recall that for a real number x,

ex =

∞∑
k=0

xk

k!
= 1 + x+

x2

2!
+
x3

3!
+
x4

4!
+ · · ·

The exponential function can also be defined for complex numbers and the same formula
still holds.
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For any complex number z,

ez =
∞∑
k=0

zk

k!
= 1 + z +

z2

2!
+
z3

3!
+
z4

4!
+ · · ·

Put z = iθ for a real number θ, then

eiθ = 1 + iθ +
(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+

(iθ)5

5!
+ · · ·

= 1 + iθ − θ2

2!
− iθ

3

3!
+
θ4

4!
+ i

θ5

5!
− · · ·

= (1− θ2

2
+
θ4

4!
− · · · )︸ ︷︷ ︸

Real part

+i (θ − θ3

3!
+
θ5

5!
− · · · )︸ ︷︷ ︸

Imaginary pary

Note that the real part and imaginary part is the power series of cos θ and sin θ respectively.
Hence

Theorem 11 (Euler’s formula). For a real number θ,

eiθ = cos θ + i sin θ.

As suggested by the notation, eiθ satisfies the properties of exponential functions. For in-
stance,

• eiα · eiβ = ei(α+β).

• eiα

eiβ
= ei(α−β).

•
(
eiθ
)n

= einθ.

These properties follow from proposition 3 and de Moivre’s theorem.


