MATH1010H: WEEK 3

ABSTRACT. In this week, we study the *limit of function*. Topics will include *one-side limits*, *limit at infinity*, *algebraic rules for limits*.

1. Limit of function

Definition 1.1. Let $f : \mathbb{R} \to \mathbb{R}$ be a function. If the value f(x) gets closer and closer to a number L as x gets closer and closer to c from both sides, then L is called the limit of function f(x) at c, and we write

$$\lim_{x \to c} f(x) = L.$$

• x gets closer and closer to c but $x \neq c$.

Example 1.2. Let f(x) = x + 1. Find $\lim_{x\to 2} f(x)$. How about $\lim_{x\to 3} f(x)$ and $\lim_{x\to c} f(x)$?

Example 1.3. Let $f(x) = \frac{x^2 - 1}{x - 1}, x \neq 1$. Find $\lim_{x \to 1} f(x)$.

Answer: We can write f as the following (piecewise defined function):

$$f(x) = \begin{cases} x+1 & \text{if } x \neq 0 \\ \text{undefined} & \text{if } x = 1 \end{cases}.$$

Thus f(x) tends to 2 as x tends to 1.

Example 1.4. Let

$$f(x) = \begin{cases} 1 + x & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -1 + x & \text{if } x < 0 \end{cases}$$

Then $\lim_{x\to 0} f(x)$ does not exists.

One-sided limits:

Definition 1.5. If f(x) gets closer and closer to a number L(R) as x gets closer and closer to c from the left (right) hand side, then L is called the left (right) hand side limit of f(x) at c. We denote it by

$$\lim_{x \to c^{-}} f(x) = L \text{ and } \lim_{x \to c^{+}} f(x) = R.$$

• the limit of f at c exists if and only if both the left hand side limit and the right hand side limit of f at c exists and equal, that is,

$$\lim_{x \to c} f(x) = k \Longleftrightarrow \lim_{x \to c^{-}} f(x) = \lim_{x \to c^{+}} f(x) = k.$$

Example 1.6. Let

$$f(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -1 & \text{if } x < 0 \end{cases}$$

Then $\lim_{x\to 0^-} f(x) = -1$ and $\lim_{x\to 0^+} = 1$.

• If f(x) = k for all x then $\lim_{x\to c} f(x) = k$. We also write $\lim_{x\to c} k = k$.

Example 1.7. Let f(x) = |x + 1| + 5. Then

$$f(x) = \begin{cases} x+6 & \text{if } x \geqslant -1 \\ -x+4 & \text{if } x < -1 \end{cases}.$$

Find $\lim_{x\to 1^+} f(x)$ and $\lim_{x\to 1^-} f(x)$.

Example 1.8. Let $a \in \mathbb{R}$ and (piece wise defined function)

$$f(x) = \begin{cases} x^2 & \text{if } x > 0\\ 0 & \text{if } x = 0\\ a\cos x & \text{if } x < 0 \end{cases}$$

Find the value of a such that $\lim_{x\to 0} f(x)$ exists.

continuous function limit at infinity algebraic rules for limits