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A tip first

Four key words in our course:

Limits

Continuous function

Differentiation — around 5 weeks

Integration— around 5 weeks
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Motivation

Average speed “
distance

time
“

100

Your time
.

The average speed between t1 and t2?

Average speed on rt1, t2s “
Spt2q ´ Spt1q

t2 ´ t1
.
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Motivation

Let Sptq “ f ptq be a function (position).

The distance travel from t “ 0 to
t “ 1 is less than the distance
travel from t “ 3 to t “ 4. That
is Sp2q ´ Sp1q ă Sp4q ´ Sp3q.
The speed is different on these
two intervals.

The average speed at interval rt0, t0 `∆ts is Spt0`∆tq´Sp∆tq
∆t

.
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Motivation: Instantaneous speed at time t0

When ∆t becomes smaller and smaller, we obtain the instantaneous
speed at time t0, i.e.,

lim
∆tÑ0

Spt0 `∆tq ´ Spt0q

∆t
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Definition: tangent line
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Motivation: Tangent line at point pt0, Spt0qq

When ∆t becomes smaller and smaller, we obtain the tangent line at
point pt0, Spt0qq with slope

lim
∆tÑ0

Spt `∆tq ´ Sptq

∆t
.

OK, it is the time for the definition now!!
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Differential function

Definition
Let x0 P D Ď R and let f : D Ď R be a function. We say that
function f pxq is differential at the point x0 if the limit

lim
∆xÑ0

f px0 `∆xq ´ f px0q

∆x

exists (called the first principle). It is called the derivative of f pxq at
x “ x0 and it is denoted by f 1px0q.

We say that f pxq is a differential
function if f is differentiable at every point in D.

Note: The set D will be one of the following sets:

R, pa, bq, pt,`8q, p´8, sq
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Differential at some point x0

By the definition, f pxq is differentiable at the point x0 if the limit

lim
∆xÑ0

f px0 `∆xq ´ f px0q

∆x

exits. Let ∆x “ x ´ x0, then ∆x Ñ 0 if and only if x Ñ x0.

Therefore, we have another form: f pxq is differentiable at x “ x0 if
the following limit exists,

lim
xÑx0

f pxq ´ f px0q

x ´ x0
.
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Notations about differential

Note: Give a differential function f , we can consider the derivative
f 1pxq as a function.

For y “ f pxq the derivative function of f is often denoted as

f 1pxq “ y 1 “
dy

dx
“

df

dx
.

Given a fixed value x0 the derivative function of f at x “ x0 is
often denoted as

f 1px0q “ y 1
ˇ

ˇ

ˇ

x“x0

“
dy

dx

ˇ

ˇ

ˇ

x“x0

“
df

dx

ˇ

ˇ

ˇ

x“x0

.
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The study plan for differential

1. Definitions, examples, work out the derivative function for the
elementary functions.

For instance, what are the derivative
functions of

xn, sin x , cos x , tan x , ax , loga x , ln x ,
x ` 3

x2 ` 5
, . . .

2. Properties of differential functions: if f is a differential function
then f is a continuous function. But the reverse is not true

3. Applications of differential—Friday and the next week

4. Taylor theorem and its applications
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Let f pxq “ k . Find f 1pxq.

Let x P R. Since for any ∆x , f px `∆xq ´ f pxq “ 0, we obtain

lim
∆xÑ0

f px `∆xq ´ f pxq

∆x
“ 0.

Thus f 1pxq “ 0.
We also write it as

f 1pxq “
dy

dx
“

df

dx
“ 0
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Let f pxq “ ax , a ‰ 0. Find f 1pxq.

For x P R and any ∆x we have

f px `∆xq ´ f pxq “ apx `∆xq ´ a∆x “ a∆x .

This gives

lim
∆xÑ0

f px `∆xq ´ f pxq

∆x
“ lim

∆xÑ0

a∆x

∆x
“ a.

Thus f 1pxq “ a.

f 1pxq “
dy

dx
“

df

dx
“ a.
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Let f pxq “ x2. Find f 1pxq.

For x P R and any ∆x we have

f px `∆xq ´ f pxq “ px `∆xq2 ´ x2
“ 2x∆x ` p∆xq2.

This gives

lim
∆xÑ0

f px `∆xq ´ f pxq

∆x
“ lim

∆xÑ0

2x∆x ` p∆xq2

∆x

“ lim
∆xÑ0

p2x `∆xq “ 2x .

Thus f 1pxq “ 2x . Also denote it as dy
dx
“ df

dx
“ 2x . Moreover,

f 1p3q “
dx2

dx

ˇ

ˇ

ˇ

x“3
“

df

dx

ˇ

ˇ

ˇ

x“3
“ 6.
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Let f pxq “ x3. Find f 1pxq.

For x P R and any ∆x we have

f px `∆xq ´ f pxq “ px `∆xq3 ´ x3
“ 3x2∆x ` 3xp∆xq2 ` p∆xq3.

This gives

lim
∆xÑ0

f px `∆xq ´ f pxq

∆x
“ lim

∆xÑ0

3x2∆x ` 3xp∆xq2 ` p∆xq3

∆x

“ lim
∆xÑ0

p3x2
` 3x∆x ` p∆xq2q “ 3x2.

Thus f 1pxq “ 3x2. Also denote it as dy
dx
“ df

dx
“ 3x2. Moreover,

f 1p3q “
dx3

dx

ˇ

ˇ

ˇ

x“3
“

df

dx

ˇ

ˇ

ˇ

x“3
“ 27.
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∆xÑ0

p3x2
` 3x∆x ` p∆xq2q “ 3x2.

Thus f 1pxq “ 3x2.

Also denote it as dy
dx
“ df

dx
“ 3x2. Moreover,

f 1p3q “
dx3

dx

ˇ

ˇ

ˇ

x“3
“

df

dx

ˇ

ˇ

ˇ

x“3
“ 27.
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Derivative of monomials

Now we proved

pkq1 “ 0

pxq1 “ 1

px2q1 “ 2x

px3q1 “ 3x2

Can you guess px4q1 “? and pxnq1 “?.

Theorem
Let f pxq “ x r for some constant r P R, then f 1pxq “ rx r´1 whenever
it is defined.
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Problems

What’s the derivative functions of x4 and x5?

What’s the derivative function of x4 ` x5?

Find
d

dx
px4

´ x5
` 7q?

Find
d

dx

2x

x2 ` 1
?
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Rules of computation

Theorem
If f pxq and gpxq are differential functions, then

pf ` gq1pxq “ f 1pxq ` g 1pxq;

pf ´ gq1pxq “ f 1pxq ´ g 1pxq;

pfgq1pxq “ f 1pxqgpxq ` f pxqg 1pxq; Product rule

ˆ

f

g

˙1

“
f 1pxqgpxq ´ f pxqg 1pxq

gpxq2
, if gpxq ‰ 0. Quotient rule
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Proof of pf ` gq1 “ f 1 ` g 1

Let F pxq “ f pxq ` gpxq then using definition of differential.

We have

F px `∆xq ´ F pxq “ f px `∆xq ´ f pxq ` gpx `∆xq ´ gpxq,

and hence

lim
∆xÑ0

F px `∆xq ´ F pxq

∆x

“ lim
∆xÑ0

ˆ

f px `∆xq ´ f pxq

∆x
`

gpx `∆xq ´ gpxq

∆x

˙

“ lim
∆xÑ0

f px `∆xq ´ f pxq

∆x
` lim

∆xÑ0

gpx `∆xq ´ gpxq

∆x

“ f 1pxq ` g 1pxq.
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Example

Find d
dx
px4 ` x5q.

Hint: pf ` gq1 “ f 1 ` g 1

d

dx
px4

` x5
q “

d

dx
x4
`

d

dx
x5

“ 4x3
` 5x4.
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Example

Find d
dx
pa0 ` a1x ` a2x

2 ` . . . anx
nq.

Hint: f ` g ` h “ f ` pg ` hq. Thus

pf ` g ` hq1 “ pf ` pg ` hqq1 “ f 1 ` pf ` gq1 “ f 1 ` g 1 ` h1.

Then
˜

n
ÿ

k“0

akx
k

¸1

“

n
ÿ

k“0

pakx
k
q
1

“ a1 ` 2a2x ` 3a3x
2
` . . . nanx

n´1.
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Example

Find d
dx
px ` 1qpx ` 2q.

Hint: pfgq1 “ f 1g ` fg 1.

d

dx
px ` 1qpx ` 2q “ px ` 1q1px ` 2q ` px ` 1qpx ` 2q1

“ x ` 2` x ` 1 “ 2x ` 3.

Also note that
d

dx
px ` 1qpx ` 2q “

d

dx
px2

` 3x ` 2q

“
d

dx
x2
`

d

dx
3x `

d

dx
2

“ 2x ` 3` 0

“ 2x ` 3.
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Example

Find d
dx

`

2x
x2`1

˘

.

Hint: f
g
“

f 1g´fg 1

g2 .

ˆ

2x

x2 ` 1

˙1

“
p2xq1px2 ` 1q ´ 2xpx2 ` 1q1

px2 ` 1q2

“
2px2 ` 1q ´ 2xp2xq

px2 ` 1q2

“
1´ 2x2

px2 ` 1q2
.
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Theorem
Let f pxq “ x r for some constant r P R, then f 1pxq “ rx r´1 whenever
it is defined.

Proof. We prove f pxq “ x
1
2 only, i.e., px1{2q1 “ 1

2
x´1{2.

For x and
∆x we have

?
x `∆x ´

?
x “

p
?
x `∆x ´

?
xqp
?
x `∆x `

?
xq

?
x `∆x `

?
x

“
∆x

?
x `∆x `

?
x
.

Thus

lim
∆xÑ0

f px `∆xq ´ f pxq

∆x
“ lim

∆xÑ0

1
?
x `∆x `

?
x
“

1

2
?
x
.
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1
2 only, i.e., px1{2q1 “ 1

2
x´1{2. For x and

∆x we have

?
x `∆x ´

?
x “

p
?
x `∆x ´

?
xqp
?
x `∆x `

?
xq

?
x `∆x `

?
x

“
∆x

?
x `∆x `

?
x
.

Thus

lim
∆xÑ0

f px `∆xq ´ f pxq

∆x
“ lim

∆xÑ0

1
?
x `∆x `

?
x
“

1

2
?
x
.
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Proof of pfgq1 “ f 1g ` g 1f I

We use the following

f px ` hqgpx ` hq ´ f pxqgpxq

“ f px ` hqgpx ` hq ´ f pxqgpx ` hq ` f pxqgpx ` hq ´ f pxqgpxq

“ pf px ` hq ´ f pxqqgpx ` hq ` f pxqpgpx ` hq ´ gpxqq.

Then using the definition of differential, limit rules, differential
function is continuous, we obtain

lim
hÑ0

f px ` hqgpx ` hq ´ f pxqgpxq

h

“ lim
hÑ0

ˆ

pf px ` hq ´ f pxqqgpx ` hq

h
`

f pxqpgpx ` hq ´ gpxqq

h

˙
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Proof of pfgq1 “ f 1g ` g 1f II

“ lim
hÑ0

pf px ` hq ´ f pxqqgpx ` hq

h
` lim

hÑ0

f pxqpgpx ` hq ´ gpxqq

h

“ lim
hÑ0

pf px ` hq ´ f pxqq

h
lim
hÑ0

gpx ` hq

` lim
hÑ0

pgpx ` hq ´ gpxqq

h
f pxq

“ f 1pxqgpxq ` g 1pxqf pxq.
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