Differential I: Definition and basic rules

Lecturer: Changhao CHEN

Some figures comes from Dr. CHAN Kai Leung, thanks a lot !!

The Chinese University of Hong Kong

21 Feb 2020

э

Four key words in our course:

- Limits
- Continuous function
- Differentiation around 5 weeks
- Integration— around 5 weeks

э

Motivation

Motivation

Average speed =
$$\frac{\text{distance}}{\text{time}} = \frac{100}{\text{Your time}}.$$

Motivation

Average speed = $\frac{\text{distance}}{\text{time}} = \frac{100}{\text{Your time}}$. The average speed between t_1 and t_2 ? Average speed on $[t_1, t_2] = \frac{S(t_2) - S(t_1)}{t_2 - t_1}$. Let S(t) = f(t) be a function (position).

æ

Let S(t) = f(t) be a function (position).

The distance travel from t = 0 to t = 1 is less than the distance travel from t = 3 to t = 4. That is S(2) - S(1) < S(4) - S(3). The speed is different on these two intervals.

э

Let S(t) = f(t) be a function (position).

The distance travel from t = 0 to t = 1 is less than the distance travel from t = 3 to t = 4. That is S(2) - S(1) < S(4) - S(3). The speed is different on these two intervals.

The average speed at interval $[t_0, t_0 + \Delta t]$ is $\frac{S(t_0 + \Delta t) - S(\Delta t)}{\Delta t}$.

Motivation: Instantaneous speed at time t_0

When Δt becomes smaller and smaller, we obtain the instantaneous speed at time t_0 , i.e.,

$$\lim_{\Delta t \to 0} \frac{S(t_0 + \Delta t) - S(t_0)}{\Delta t}$$

Motivation: Instantaneous speed at time t_0

When Δt becomes smaller and smaller, we obtain the instantaneous speed at time t_0 , i.e.,

$$\lim_{\Delta t \to 0} \frac{S(t_0 + \Delta t) - S(t_0)}{\Delta t}$$

Differential I: Definition and basic rules

Definition: tangent line

æ

∃ >

< A

.∃ >

Motivation: Tangent line at point $(t_0, S(t_0))$

When Δt becomes smaller and smaller, we obtain the tangent line at point $(t_0, S(t_0))$ with slope

$$\lim_{\Delta t \to 0} \frac{S(t + \Delta t) - S(t)}{\Delta t}$$

Motivation: Tangent line at point $(t_0, S(t_0))$

When Δt becomes smaller and smaller, we obtain the tangent line at point $(t_0, S(t_0))$ with slope

$$\lim_{\Delta t \to 0} \frac{S(t + \Delta t) - S(t)}{\Delta t}$$

OK, it is the time for the definition now!!

(CUHK)

Differential function

Definition

Let $x_0 \in \mathcal{D} \subseteq \mathbb{R}$ and let $f : \mathcal{D} \subseteq \mathbb{R}$ be a function. We say that function f(x) is differential at the point x_0 if the limit

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

exists (called the first principle). It is called the derivative of f(x) at $x = x_0$ and it is denoted by $f'(x_0)$.

Differential function

Definition

Let $x_0 \in \mathcal{D} \subseteq \mathbb{R}$ and let $f : \mathcal{D} \subseteq \mathbb{R}$ be a function. We say that function f(x) is differential at the point x_0 if the limit

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

exists (called the first principle). It is called the derivative of f(x) at $x = x_0$ and it is denoted by $f'(x_0)$. We say that f(x) is a differential function if f is differentiable at every point in \mathcal{D} .

Differential function

Definition

Let $x_0 \in \mathcal{D} \subseteq \mathbb{R}$ and let $f : \mathcal{D} \subseteq \mathbb{R}$ be a function. We say that function f(x) is differential at the point x_0 if the limit

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

exists (called the first principle). It is called the derivative of f(x) at $x = x_0$ and it is denoted by $f'(x_0)$. We say that f(x) is a differential function if f is differentiable at every point in \mathcal{D} .

Note: The set \mathcal{D} will be one of the following sets:

$$\mathbb{R}, (a, b), (t, +\infty), (-\infty, s)$$

By the definition, f(x) is differentiable at the point x_0 if the limit

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

exits. Let $\Delta x = x - x_0$, then $\Delta x \to 0$ if and only if $x \to x_0$.

By the definition, f(x) is differentiable at the point x_0 if the limit

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

exits. Let $\Delta x = x - x_0$, then $\Delta x \to 0$ if and only if $x \to x_0$.

Therefore, we have another form: f(x) is differentiable at $x = x_0$ if the following limit exists,

$$\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}.$$

ヘロト 人間ト 人間ト 人間ト

æ

Note: Give a differential function f, we can consider the derivative f'(x) as a function.

э

Note: Give a differential function f, we can consider the derivative f'(x) as a function.

• For y = f(x) the derivative function of f is often denoted as

$$f'(x) = y' = \frac{dy}{dx} = \frac{df}{dx}$$

Note: Give a differential function f, we can consider the derivative f'(x) as a function.

• For y = f(x) the derivative function of f is often denoted as

$$f'(x) = y' = \frac{dy}{dx} = \frac{df}{dx}$$

• Given a fixed value x_0 the derivative function of f at $x = x_0$ is often denoted as

$$f'(x_0) = y'\Big|_{x=x_0} = \frac{dy}{dx}\Big|_{x=x_0} = \frac{df}{dx}\Big|_{x=x_0}$$

The study plan for differential

1. Definitions, examples, work out the derivative function for the elementary functions.

The study plan for differential

1. Definitions, examples, work out the derivative function for the elementary functions. For instance, what are the derivative functions of

$$x^{n}, \sin x, \cos x, \tan x, a^{x}, \log_{a} x, \ln x, \frac{x+3}{x^{2}+5}, \dots$$

The study plan for differential

1. Definitions, examples, work out the derivative function for the elementary functions. For instance, what are the derivative functions of

$$x^{n}, \sin x, \cos x, \tan x, a^{x}, \log_{a} x, \ln x, \frac{x+3}{x^{2}+5}, \dots$$

2. Properties of differential functions: if f is a differential function then f is a continuous function. But the reverse is not true 1. Definitions, examples, work out the derivative function for the elementary functions. For instance, what are the derivative functions of

$$x^{n}, \sin x, \cos x, \tan x, a^{x}, \log_{a} x, \ln x, \frac{x+3}{x^{2}+5}, \dots$$

- 2. Properties of differential functions: if f is a differential function then f is a continuous function. But the reverse is not true
- 3. Applications of differential—Friday and the next week

1. Definitions, examples, work out the derivative function for the elementary functions. For instance, what are the derivative functions of

$$x^{n}, \sin x, \cos x, \tan x, a^{x}, \log_{a} x, \ln x, \frac{x+3}{x^{2}+5}, \dots$$

- 2. Properties of differential functions: if f is a differential function then f is a continuous function. But the reverse is not true
- 3. Applications of differential—Friday and the next week
- 4. Taylor theorem and its applications

Let f(x) = k. Find f'(x).

(CUHK)

Let $x \in \mathbb{R}$. Since for any Δx , $f(x + \Delta x) - f(x) = 0$,

イロト イポト イヨト イヨト

Let $x \in \mathbb{R}$. Since for any Δx , $f(x + \Delta x) - f(x) = 0$, we obtain

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = 0.$$

イロト イポト イヨト イヨト

Let $x \in \mathbb{R}$. Since for any Δx , $f(x + \Delta x) - f(x) = 0$, we obtain

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = 0.$$

Thus f'(x) = 0.

イロト イ理ト イヨト イヨト

Let $x \in \mathbb{R}$. Since for any Δx , $f(x + \Delta x) - f(x) = 0$, we obtain

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = 0.$$

Thus f'(x) = 0. We also write it as

$$f'(x) = \frac{dy}{dx} = \frac{df}{dx} = 0$$

Let $f(x) = ax, a \neq 0$. Find f'(x).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ の々⊙

Let $f(x) = ax, a \neq 0$. Find f'(x).

$$f(x + \Delta x) - f(x) = a(x + \Delta x) - a\Delta x = a\Delta x.$$

イロト イポト イヨト イヨト

æ

Let
$$f(x) = ax, a \neq 0$$
. Find $f'(x)$.

$$f(x + \Delta x) - f(x) = a(x + \Delta x) - a\Delta x = a\Delta x.$$

This gives

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{a\Delta x}{\Delta x} = a.$$

Image: A matrix

-

э

æ

Let
$$f(x) = ax, a \neq 0$$
. Find $f'(x)$.

$$f(x + \Delta x) - f(x) = a(x + \Delta x) - a\Delta x = a\Delta x.$$

This gives

Thus

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{a\Delta x}{\Delta x} = a.$$

$$f'(x) = a.$$

• • • • • • • • • • • •

표 문 문

Let
$$f(x) = ax, a \neq 0$$
. Find $f'(x)$.

$$f(x + \Delta x) - f(x) = a(x + \Delta x) - a\Delta x = a\Delta x.$$

This gives

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{a\Delta x}{\Delta x} = a.$$

Thus $f'(x) = a$.

$$f'(x) = \frac{dy}{dx} = \frac{dr}{dx} = a.$$

Image: A match a ma
Ξ.

イロト イ理ト イヨト イヨト

For $x \in \mathbb{R}$ and any Δx we have

$$f(x + \Delta x) - f(x) = (x + \Delta x)^2 - x^2 = 2x\Delta x + (\Delta x)^2.$$

æ

・ロト ・聞ト ・ ほト ・ ほト

For $x \in \mathbb{R}$ and any Δx we have

$$f(x + \Delta x) - f(x) = (x + \Delta x)^2 - x^2 = 2x\Delta x + (\Delta x)^2.$$

This gives

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{2x\Delta x + (\Delta x)^2}{\Delta x}$$

< /₽ > < E > <

글▶ 글

For $x \in \mathbb{R}$ and any Δx we have

$$f(x + \Delta x) - f(x) = (x + \Delta x)^2 - x^2 = 2x\Delta x + (\Delta x)^2.$$

This gives

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{2x\Delta x + (\Delta x)^2}{\Delta x}$$
$$= \lim_{\Delta x \to 0} (2x + \Delta x) = 2x.$$

▲ @ ▶ < ∃ ▶ <</p>

글▶ 글

For $x \in \mathbb{R}$ and any Δx we have

$$f(x + \Delta x) - f(x) = (x + \Delta x)^2 - x^2 = 2x\Delta x + (\Delta x)^2.$$

This gives

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{2x\Delta x + (\Delta x)^2}{\Delta x}$$
$$= \lim_{\Delta x \to 0} (2x + \Delta x) = 2x.$$

Thus f'(x) = 2x.

・ 何 ト ・ ヨ ト ・ ヨ ト

For $x \in \mathbb{R}$ and any Δx we have

$$f(x + \Delta x) - f(x) = (x + \Delta x)^2 - x^2 = 2x\Delta x + (\Delta x)^2.$$

This gives

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{2x\Delta x + (\Delta x)^2}{\Delta x}$$

$$=\lim_{\Delta x\to 0}(2x+\Delta x)=2x.$$

Thus f'(x) = 2x. Also denote it as $\frac{dy}{dx} = \frac{df}{dx} = 2x$.

- 4 緑 ト - 4 三 ト - 4 三 ト

For $x \in \mathbb{R}$ and any Δx we have

$$f(x + \Delta x) - f(x) = (x + \Delta x)^2 - x^2 = 2x\Delta x + (\Delta x)^2.$$

This gives

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{2x\Delta x + (\Delta x)^2}{\Delta x}$$

$$=\lim_{\Delta x\to 0}(2x+\Delta x)=2x.$$

Thus f'(x) = 2x. Also denote it as $\frac{dy}{dx} = \frac{df}{dx} = 2x$. Moreover,

$$f'(3) = \frac{dx^2}{dx}\Big|_{x=3} = \frac{df}{dx}\Big|_{x=3} = 6.$$

- 4 伺 ト 4 ヨ ト 4 ヨ ト

Ξ.

イロト イ理ト イヨト イヨト

For $x \in \mathbb{R}$ and any Δx we have

 $f(x + \Delta x) - f(x) = (x + \Delta x)^3 - x^3 = 3x^2\Delta x + 3x(\Delta x)^2 + (\Delta x)^3.$

For $x \in \mathbb{R}$ and any Δx we have $f(x + \Delta x) - f(x) = (x + \Delta x)^3 - x^3 = 3x^2\Delta x + 3x(\Delta x)^2 + (\Delta x)^3.$

This gives

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{3x^2 \Delta x + 3x (\Delta x)^2 + (\Delta x)^3}{\Delta x}$$

For $x \in \mathbb{R}$ and any Δx we have $f(x + \Delta x) - f(x) = (x + \Delta x)^3 - x^3 = 3x^2\Delta x + 3x(\Delta x)^2 + (\Delta x)^3.$

This gives

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{3x^2 \Delta x + 3x (\Delta x)^2 + (\Delta x)^3}{\Delta x}$$

$$= \lim_{\Delta x \to 0} (3x^2 + 3x\Delta x + (\Delta x)^2) = 3x^2.$$

For $x \in \mathbb{R}$ and any Δx we have $f(x + \Delta x) - f(x) = (x + \Delta x)^3 - x^3 = 3x^2\Delta x + 3x(\Delta x)^2 + (\Delta x)^3.$

This gives

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{3x^2 \Delta x + 3x (\Delta x)^2 + (\Delta x)^3}{\Delta x}$$

$$= \lim_{\Delta x \to 0} (3x^2 + 3x\Delta x + (\Delta x)^2) = 3x^2.$$

Thus $f'(x) = 3x^2$.

For $x \in \mathbb{R}$ and any Δx we have $f(x + \Delta x) - f(x) = (x + \Delta x)^3 - x^3 = 3x^2\Delta x + 3x(\Delta x)^2 + (\Delta x)^3.$

This gives

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{3x^2 \Delta x + 3x (\Delta x)^2 + (\Delta x)^3}{\Delta x}$$

$$= \lim_{\Delta x \to 0} (3x^2 + 3x\Delta x + (\Delta x)^2) = 3x^2.$$

Thus $f'(x) = 3x^2$. Also denote it as $\frac{dy}{dx} = \frac{df}{dx} = 3x^2$.

For $x \in \mathbb{R}$ and any Δx we have $f(x + \Delta x) - f(x) = (x + \Delta x)^3 - x^3 = 3x^2\Delta x + 3x(\Delta x)^2 + (\Delta x)^3.$

This gives

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{3x^2 \Delta x + 3x (\Delta x)^2 + (\Delta x)^3}{\Delta x}$$

$$= \lim_{\Delta x \to 0} (3x^2 + 3x\Delta x + (\Delta x)^2) = 3x^2.$$

Thus $f'(x) = 3x^2$. Also denote it as $\frac{dy}{dx} = \frac{df}{dx} = 3x^2$. Moreover,

$$f'(3) = \frac{dx^3}{dx}\Big|_{x=3} = \frac{df}{dx}\Big|_{x=3} = 27.$$

•
$$(k)' = 0$$

<回ト < 回ト <

표 문 문

•
$$(k)' = 0$$

• (x)' = 1

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

æ

- (k)' = 0
- (x)' = 1
- $(x^2)' = 2x$

æ

- (k)' = 0
- (x)' = 1
- $(x^2)' = 2x$
- $(x^3)' = 3x^2$

æ

・ 何 ト ・ ヨ ト ・ ヨ ト

- (k)' = 0
- (x)' = 1
- $(x^2)' = 2x$
- $(x^3)' = 3x^2$
- Can you guess $(x^4)' = ?$ and $(x^n)' = ?$.

- (k)' = 0
- (x)' = 1
- $(x^2)' = 2x$
- $(x^3)' = 3x^2$

(CUHK)

• Can you guess $(x^4)' = ?$ and $(x^n)' = ?$.

Theorem

Let $f(x) = x^r$ for some constant $r \in \mathbb{R}$, then $f'(x) = rx^{r-1}$ whenever it is defined.

• What's the derivative functions of x^4 and x^5 ?

æ

∃ >

- ∢ ศ⊒ ▶

- **∢ ∃** ►

- What's the derivative functions of x^4 and x^5 ?
- What's the derivative function of $x^4 + x^5$?

э

- What's the derivative functions of x^4 and x^5 ?
- What's the derivative function of $x^4 + x^5$?

Find

$$\frac{d}{dx}(x^4-x^5+7)?$$

- What's the derivative functions of x^4 and x^5 ?
- What's the derivative function of $x^4 + x^5$?
- Find

$$\frac{d}{dx}(x^4-x^5+7)?$$

Find

$$\frac{d}{dx}\frac{2x}{x^2+1}?$$

Theorem

If f(x) and g(x) are differential functions, then

Theorem

If f(x) and g(x) are differential functions, then

$$(f + g)'(x) = f'(x) + g'(x);$$

Theorem

If f(x) and g(x) are differential functions, then

$$(f + g)'(x) = f'(x) + g'(x);$$

$$(f-g)'(x) = f'(x) - g'(x);$$

Theorem

If f(x) and g(x) are differential functions, then

$$(f + g)'(x) = f'(x) + g'(x);$$

$$(f-g)'(x) = f'(x) - g'(x);$$

(fg)'(x) = f'(x)g(x) + f(x)g'(x); Product rule

Theorem

If f(x) and g(x) are differential functions, then

$$(f + g)'(x) = f'(x) + g'(x);$$

$$(f-g)'(x) = f'(x) - g'(x);$$

(fg)'(x) = f'(x)g(x) + f(x)g'(x); Product rule

$$\left(rac{f}{g}
ight)' = rac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}, \quad \textit{if} \quad g(x)
eq 0.$$
 Quotient rule

Let F(x) = f(x) + g(x) then using definition of differential.

イロト イ理ト イヨト イヨト 二日

Let F(x) = f(x) + g(x) then using definition of differential. We have $F(x + \Delta x) - F(x) = f(x + \Delta x) - f(x) + g(x + \Delta x) - g(x),$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ∽○○○

Let F(x) = f(x) + g(x) then using definition of differential. We have $F(x + \Delta x) - F(x) = f(x + \Delta x) - f(x) + g(x + \Delta x) - g(x),$

and hence

$$\lim_{\Delta x \to 0} \frac{F(x + \Delta x) - F(x)}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \left(\frac{f(x + \Delta x) - f(x)}{\Delta x} + \frac{g(x + \Delta x) - g(x)}{\Delta x} \right)$$

Let F(x) = f(x) + g(x) then using definition of differential. We have $F(x + \Delta x) - F(x) = f(x + \Delta x) - f(x) + g(x + \Delta x) - g(x),$

and hence

$$\lim_{\Delta x \to 0} \frac{F(x + \Delta x) - F(x)}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \left(\frac{f(x + \Delta x) - f(x)}{\Delta x} + \frac{g(x + \Delta x) - g(x)}{\Delta x} \right)$$
$$= \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} + \lim_{\Delta x \to 0} \frac{g(x + \Delta x) - g(x)}{\Delta x}$$

Let F(x) = f(x) + g(x) then using definition of differential. We have $F(x + \Delta x) - F(x) = f(x + \Delta x) - f(x) + g(x + \Delta x) - g(x),$

and hence

$$\lim_{\Delta x \to 0} \frac{F(x + \Delta x) - F(x)}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \left(\frac{f(x + \Delta x) - f(x)}{\Delta x} + \frac{g(x + \Delta x) - g(x)}{\Delta x} \right)$$
$$= \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} + \lim_{\Delta x \to 0} \frac{g(x + \Delta x) - g(x)}{\Delta x}$$
$$= f'(x) + g'(x).$$

Example

Find
$$\frac{d}{dx}(x^4 + x^5)$$
.

<ロ> (日) (日) (日) (日) (日)

Example

Find $\frac{d}{dx}(x^4 + x^5)$.

Hint: (f + g)' = f' + g'
Find $\frac{d}{dx}(x^4 + x^5)$.

Hint: (f + g)' = f' + g'

$$\frac{d}{dx}(x^4 + x^5) = \frac{d}{dx}x^4 + \frac{d}{dx}x^5$$

Find $\frac{d}{dx}(x^4 + x^5)$.

Hint: (f + g)' = f' + g'

$$\frac{d}{dx}(x^4 + x^5) = \frac{d}{dx}x^4 + \frac{d}{dx}x^5$$
$$= 4x^3 + 5x^4.$$

(CUHK)

3

イロン イ理と イヨン イヨン

Find $\frac{d}{dx}(a_0 + a_1x + a_2x^2 + \ldots a_nx^n)$.

3

イロト 不得下 イヨト イヨト

Find
$$\frac{d}{dx}(a_0 + a_1x + a_2x^2 + \dots a_nx^n)$$
.

Hint: f + g + h = f + (g + h). Thus

(f + g + h)' = (f + (g + h))' = f' + (f + g)' = f' + g' + h'.

イロト イポト イヨト イヨト

3

Find
$$\frac{d}{dx}(a_0 + a_1x + a_2x^2 + \dots a_nx^n)$$
.

Hint: f + g + h = f + (g + h). Thus

$$(f + g + h)' = (f + (g + h))' = f' + (f + g)' = f' + g' + h'.$$

Then

$$\left(\sum_{k=0}^n a_k x^k\right)' = \sum_{k=0}^n (a_k x^k)'$$

イロト イヨト イヨト イヨト

Find
$$\frac{d}{dx}(a_0 + a_1x + a_2x^2 + \dots a_nx^n)$$
.

Hint: f + g + h = f + (g + h). Thus

$$(f + g + h)' = (f + (g + h))' = f' + (f + g)' = f' + g' + h'.$$

Then

$$\left(\sum_{k=0}^{n} a_k x^k\right)' = \sum_{k=0}^{n} (a_k x^k)'$$
$$= a_1 + 2a_2 x + 3a_3 x^2 + \dots na_n x^{n-1}.$$

• • • • • • • • • • • •

글 > 글

Find
$$\frac{d}{dx}(x+1)(x+2)$$
.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Find
$$\frac{d}{dx}(x+1)(x+2)$$
.

Hint:
$$(fg)' = f'g + fg'$$
.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Find
$$\frac{d}{dx}(x+1)(x+2)$$
.

Hint:
$$(fg)' = f'g + fg'$$
.
 $\frac{d}{dx}(x+1)(x+2) = (x+1)'(x+2) + (x+1)(x+2)'$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Find
$$\frac{d}{dx}(x+1)(x+2)$$
.

Hint:
$$(fg)' = f'g + fg'$$
.
 $\frac{d}{dx}(x+1)(x+2) = (x+1)'(x+2) + (x+1)(x+2)'$
 $= x+2+x+1 = 2x+3$.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Find
$$\frac{d}{dx}(x+1)(x+2)$$
.

Hint:
$$(fg)' = f'g + fg'$$
.
 $\frac{d}{dx}(x+1)(x+2) = (x+1)'(x+2) + (x+1)(x+2)'$

$$= x + 2 + x + 1 = 2x + 3.$$

Also note that

$$\frac{d}{dx}(x+1)(x+2) = \frac{d}{dx}(x^2+3x+2)$$

2

Find
$$\frac{d}{dx}(x+1)(x+2)$$
.

Hint:
$$(fg)' = f'g + fg'$$
.
 $\frac{d}{dx}(x+1)(x+2) = (x+1)'(x+2) + (x+1)(x+2)'$

$$= x + 2 + x + 1 = 2x + 3.$$

Also note that

$$\frac{d}{dx}(x+1)(x+2) = \frac{d}{dx}(x^2+3x+2)$$
$$= \frac{d}{dx}x^2 + \frac{d}{dx}3x + \frac{d}{dx}2$$

2

Find
$$\frac{d}{dx}(x+1)(x+2)$$
.

Hint:
$$(fg)' = f'g + fg'$$
.
 $\frac{d}{dx}(x+1)(x+2) = (x+1)'(x+2) + (x+1)(x+2)'$

$$= x + 2 + x + 1 = 2x + 3.$$

Also note that

$$\frac{d}{dx}(x+1)(x+2) = \frac{d}{dx}(x^2+3x+2)$$
$$= \frac{d}{dx}x^2 + \frac{d}{dx}3x + \frac{d}{dx}2$$
$$= 2x+3+0$$

æ

Find
$$\frac{d}{dx}(x+1)(x+2)$$
.

Hint:
$$(fg)' = f'g + fg'$$
.
 $\frac{d}{dx}(x+1)(x+2) = (x+1)'(x+2) + (x+1)(x+2)'$

$$= x + 2 + x + 1 = 2x + 3.$$

Also note that

$$\frac{d}{dx}(x+1)(x+2) = \frac{d}{dx}(x^2+3x+2)$$
$$= \frac{d}{dx}x^2 + \frac{d}{dx}3x + \frac{d}{dx}2$$
$$= 2x+3+0$$

æ

Find
$$\frac{d}{dx}\left(\frac{2x}{x^2+1}\right)$$
.

2

Find
$$\frac{d}{dx}\left(\frac{2x}{x^2+1}\right)$$
.

Hint:
$$\frac{f}{g} = \frac{f'g - fg'}{g^2}$$
.

2

Find
$$\frac{d}{dx}\left(\frac{2x}{x^2+1}\right)$$
.

Hint: $\frac{f}{g} = \frac{f'g - fg'}{g^2}$.

$$\left(\frac{2x}{x^2+1}\right)' = \frac{(2x)'(x^2+1) - 2x(x^2+1)'}{(x^2+1)^2}$$

2

Find
$$\frac{d}{dx}\left(\frac{2x}{x^2+1}\right)$$
.

Hint: $\frac{f}{g} = \frac{f'g - fg'}{g^2}$.

$$\left(\frac{2x}{x^2+1}\right)' = \frac{(2x)'(x^2+1) - 2x(x^2+1)'}{(x^2+1)^2}$$
$$= \frac{2(x^2+1) - 2x(2x)}{(x^2+1)^2}$$

(CUHK)

3

Find
$$\frac{d}{dx}\left(\frac{2x}{x^2+1}\right)$$
.

Hint: $\frac{f}{g} = \frac{f'g - fg'}{g^2}$.

$$\left(\frac{2x}{x^2+1}\right)' = \frac{(2x)'(x^2+1) - 2x(x^2+1)'}{(x^2+1)^2}$$
$$= \frac{2(x^2+1) - 2x(2x)}{(x^2+1)^2}$$
$$= \frac{1 - 2x^2}{(x^2+1)^2}.$$

3

イロン イ理と イヨン イヨン

Let $f(x) = x^r$ for some constant $r \in \mathbb{R}$, then $f'(x) = rx^{r-1}$ whenever it is defined.

Proof. We prove $f(x) = x^{\frac{1}{2}}$ only, i.e., $(x^{1/2})' = \frac{1}{2}x^{-1/2}$.

3

Let $f(x) = x^r$ for some constant $r \in \mathbb{R}$, then $f'(x) = rx^{r-1}$ whenever it is defined.

Proof. We prove $f(x) = x^{\frac{1}{2}}$ only, i.e., $(x^{1/2})' = \frac{1}{2}x^{-1/2}$. For x and Δx we have

$$\sqrt{x + \Delta x} - \sqrt{x} = rac{(\sqrt{x + \Delta x} - \sqrt{x})(\sqrt{x + \Delta x} + \sqrt{x})}{\sqrt{x + \Delta x} + \sqrt{x}}$$

Let $f(x) = x^r$ for some constant $r \in \mathbb{R}$, then $f'(x) = rx^{r-1}$ whenever it is defined.

Proof. We prove $f(x) = x^{\frac{1}{2}}$ only, i.e., $(x^{1/2})' = \frac{1}{2}x^{-1/2}$. For x and Δx we have

$$\sqrt{x + \Delta x} - \sqrt{x} = rac{(\sqrt{x + \Delta x} - \sqrt{x})(\sqrt{x + \Delta x} + \sqrt{x})}{\sqrt{x + \Delta x} + \sqrt{x}}$$

$$=\frac{\Delta x}{\sqrt{x+\Delta x}+\sqrt{x}}$$

3

Let $f(x) = x^r$ for some constant $r \in \mathbb{R}$, then $f'(x) = rx^{r-1}$ whenever it is defined.

Proof. We prove $f(x) = x^{\frac{1}{2}}$ only, i.e., $(x^{1/2})' = \frac{1}{2}x^{-1/2}$. For x and Δx we have

$$\sqrt{x + \Delta x} - \sqrt{x} = rac{(\sqrt{x + \Delta x} - \sqrt{x})(\sqrt{x + \Delta x} + \sqrt{x})}{\sqrt{x + \Delta x} + \sqrt{x}}$$

$$=\frac{\Delta x}{\sqrt{x+\Delta x}+\sqrt{x}}.$$

Thus

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{1}{\sqrt{x + \Delta x} + \sqrt{x}} = \frac{1}{2\sqrt{x}}.$$

3

(CUHK)

Differential I: Definition and basic rules

We use the following

$$f(x+h)g(x+h) - f(x)g(x)$$

=f(x+h)g(x+h)-f(x)g(x+h)+f(x)g(x+h)-f(x)g(x)

3

We use the following

$$f(x+h)g(x+h) - f(x)g(x)$$

= $f(x+h)g(x+h) - f(x)g(x+h) + f(x)g(x+h) - f(x)g(x)$
= $(f(x+h) - f(x))g(x+h) + f(x)(g(x+h) - g(x)).$

æ

・ロト ・聞ト ・ ほト ・ ほト

We use the following

$$f(x+h)g(x+h) - f(x)g(x)$$

= $f(x+h)g(x+h) - f(x)g(x+h) + f(x)g(x+h) - f(x)g(x)$

$$= (f(x+h) - f(x))g(x+h) + f(x)(g(x+h) - g(x)).$$

Then using the definition of differential, limit rules, differential function is continuous, we obtain

э

We use the following

$$f(x+h)g(x+h) - f(x)g(x)$$

= $f(x+h)g(x+h) - f(x)g(x+h) + f(x)g(x+h) - f(x)g(x)$
= $(f(x+h) - f(x))g(x+h) + f(x)(g(x+h) - g(x)).$

Then using the definition of differential, limit rules, differential function is continuous, we obtain

$$\lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h}$$

э

We use the following

$$f(x+h)g(x+h) - f(x)g(x)$$

= $f(x+h)g(x+h) - f(x)g(x+h) + f(x)g(x+h) - f(x)g(x)$
= $(f(x+h) - f(x))g(x+h) + f(x)(g(x+h) - g(x)).$

Then using the definition of differential, limit rules, differential function is continuous, we obtain

$$\lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h}$$
$$\lim_{h \to 0} \left(\frac{(f(x+h) - f(x))g(x+h)}{h} + \frac{f(x)(g(x+h) - g(x))}{h} \right)$$

(CUHK)

=

< 口 > < 同 > < 三 > < 三 > < 三 > <

$$= \lim_{h \to 0} \frac{(f(x+h) - f(x))g(x+h)}{h} + \lim_{h \to 0} \frac{f(x)(g(x+h) - g(x))}{h}$$
$$= \lim_{h \to 0} \frac{(f(x+h) - f(x))}{h} \lim_{h \to 0} g(x+h)$$

$$= \lim_{h \to 0} \frac{(f(x+h) - f(x))g(x+h)}{h} + \lim_{h \to 0} \frac{f(x)(g(x+h) - g(x))}{h}$$
$$= \lim_{h \to 0} \frac{(f(x+h) - f(x))}{h} \lim_{h \to 0} g(x+h)$$
$$+ \lim_{h \to 0} \frac{(g(x+h) - g(x))}{h} f(x)$$

$$= \lim_{h \to 0} \frac{(f(x+h) - f(x))g(x+h)}{h} + \lim_{h \to 0} \frac{f(x)(g(x+h) - g(x))}{h}$$
$$= \lim_{h \to 0} \frac{(f(x+h) - f(x))}{h} \lim_{h \to 0} g(x+h)$$
$$+ \lim_{h \to 0} \frac{(g(x+h) - g(x))}{h} f(x)$$
$$= f'(x)g(x) + g'(x)f(x).$$