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Chapter 1: Stochastic Processes ™ ¢

What are Stochastic Processes, and how do they fit in?

STATS 310
- Statistics
STATS 210 Randomness in Patte
Foundations of
Statistics and Probability
Tools for understanding randomngss
(random variables, distributions) STATS 325
I Probability

Randomness in Proce

Stats 210: laid the foundations of both Statistics and Probability: the tools for
understanding randomness.

Stats 310: develops the theory for understanding randommness in pattern: tools
for estimating parameters (maximum likelihood), testing hypotheses, modelling
patterns in data (regression models).

Stats 325: develops the theory for understanding randomness in process. A
process is a sequence of events where each step follows from the last after a
random choice.

What sort of problems will we cover in Stats 3257

Here are some examples of the sorts of problems that we study in this course.

Gambler’s Ruin

You start with $30 and toss a fair coin
repeatedly. Every time you throw a Head, you
win $5. Every time you throw a Tail, you lose
$5. You will stop when you reach $100 or when
you lose everything. What is the probability that
you lose everything? Answer: 70%.
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Winning at tennis

What is your probability of winning a game of tennis,
starting from the even score Deuce (40-40), if your
probability of winning each point is 0.3 and your
opponent’s is 0.77

P VENUS e VENUS
WINS (W
Answer: 15%. "m Wik

VENUS VENUS
R BEHIND (B) | q ™ L LOSES (L

Winning a lottery P

q

A million people have bought tickets for the weekly lottery
draw. Each person has a probability of one-in-a-million
of selecting the winning numbers. If more than one person
selects the winning numbers, the winner will be chosen

at random from all those with matching numbers.

You watch the lottery draw on TV and your numbers match the winning num-
bers!!! Only a one-in-a-million chance, and there were only a million players,
so surely you will win the prize?

Not quite... What is the probability you will win? Answer: only 63%.

Drunkard’s walk

A very drunk person staggers to left and right as he walks along. With each
step he takes, he staggers one pace to the left with probability 0.5, and one
pace to the right with probability 0.5. What is the expected number of paces
he must take before he ends up one pace to the left of his starting point?

Arrived!

=
*@ﬁ*ﬁﬁ¥&£

Answer: the expectation is infinite!
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Have you received a chain letter like this one? Just send $10 to the person
whose name comes at the top of the list, and add your own name to the bottom
of the list. Send the letter to as many people as you can. Within a few months,

the letter promises, you will have received $77,000 in $10

P WAS AMAZED WHEN [ SAW HOW MUCH MONEY CAME
FLOODING THROUGH MY LETTER BOX...I TURNED 5218
INTO $78190 WITHIN THE FIRST 80 DAYS OF OFERATING
THIS BUSINESS PLAN

DO NOT BIN THIS IMMEDIATELY
THINK ABOUT IT FOR A FEW DAYS
FILE IN PENDING

My name is David Rhodes and in September 1997 1 lost my job. At the time E
| ras living at the edge of my means amd in debt, Consequently, ihis staited a
chaiz reaction that ended with the repossessien of my home and car, If that

notes! Will you?

wasi't encugh several debt collectors were constanily howndi

jmagine iife Isoled Hleak . THIS 1S HOW THE S¥STEM WORKS
- WITHIN 60 DAYS

Ta Japuary 1995 T received a letter telling me bow to make ov

apaxt from that, I conldn’t step mysel from thinking what I eserve it.

fn the summer of 1999 my family aud Twent on a cruise and
siew Mercedes with cash and we are enrrently pusiding our §
Lome and Edon't owe a single cent.

To date 1 have made ovek 1,100,000 Jiven e s T ovrite thi I 605y 3% of 1200 peoplé xespord fo youit letfer, 36 pecple
it hiaxd o come fo torms W o ihat tike most paople, T | 17200 lefters with your name 2t o3

letters with your wame at Nod.’

543,200 letters with vonr name at NaoZ.

1='259,200 letters with your name at Nok.

$77,760.09in $10 notes

time. Lignored it hcn,“‘““ Twas scept‘icali Hnwevu;pyul\:lalrch ouhiave sert off yonr§10 note then mailed 200 letters (winimum) your defails are
ir: debt. T finalfy veatised thut | had absolutely nothing fa lose printed at NoS on pach 'of them. Your tasks zre now:complete. Sit back and relax- you. | :

T anly 3% ol 200 people respord‘to yourletier; 6 peonds witl mail 200 letter each =1200

will mail 200 Teiters gach =

1f only 3% of 7,200 people respond ta yougletter, 2i6 people will mail 206 letters each
It only 3% 01 43,200 pooplé redpond:to.your letter; 1296 peoplawill Tnail 200 letiers cach

T onky 3% n(259,209'pe0p[e réspond to thoir letters 7,776 people:wiliseadynu.$10 each
Ibcoause your darie s At N1 position therefore you will receive”

Answer: it depends upon the response rate. However, with a fairly realistic
assumption about response rate, we can calculate an expected return of $76

with a 64% chance of getting nothing!

Note: Pyramid selling schemes like this are prohibited under the Fair Trading Act,

and it is illegal to participate in them.

SINGAPORE SARS STORY

Spread of SARS

of the disease SARS (Severe Acute

SN

t

_.“
#2 m?

Respiratory Syndrome) through Singapore fl[é ié HQ'?'
in 2003. With this pattern of infections,
what is the probability that the disease '

STYITITITLLL

SUPER
SUPER SPRERDER
itd

SPREADER
3

9GH CLUSTER

eventually dies out of its own accord? "*Q‘*’* T}
Answer: 0.997. ’_‘

LHITIITY
¢
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Markov’s Marvellous Mystery Tours

Mr Markov’s Marvellous Mystery Tours promises an All-Stochastic Tourist Ex-
perience for the town of Rotorua. Mr Markov has eight tourist attractions, to
which he will take his clients completely at random with the probabilities shown
below. He promises at least three exciting attractions per tour, ending at either
the Lady Knox Geyser or the Tarawera Volcano. (Unfortunately he makes no
mention of how the hapless tourist might get home from these places.)

What is the expected number of activities for a tour starting from the museum?

1/3
2. Cruise —®{4. Flying Fox~_ 1
1/3 6. Ge ser/D 1
13 1/3| [1/3 1/3 Y
, . : 1/3
1. Museum—®| 3. Buried Village—®| 5. Hangi
1/3 1/3
1/3
1/3 1/3

7. Helicopter—® 8. Volcano/D 1
1 Answer: 4.2.

Structure of the course

e Probability. Probability and random variables, with special focus on
conditional probability. Finding hitting probabilities for stochastic pro-
cesses.

e Fxpectation. Expectation and variance. Introduction to conditional ex-
pectation, and its application in finding expected reaching times in stochas-
tic processes.

e Generating functions. Introduction to probability generating func-
tions, and their applications to stochastic processes, especially the Random
Walk.

e Branching process. This process is a simple model for reproduction.
Examples are the pyramid selling scheme and the spread of SARS above.
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e Markov chains. Almost all the examples we look at throughout the
course can be formulated as Markov chains. By developing a single unify-
ing theory, we can easily tackle complex problems with many states and
transitions like Markov’s Marvellous Mystery Tours above.

The rest of this chapter covers:
e quick revision of sample spaces and random variables;

e formal definition of stochastic processes.

1.1 Revision: Sample spaces and random variables

Definition: A random experiment is a physical situation whose outcome cannot
be predicted until it is observed.

Definition: A sample space, €, is a set of possible outcomes of a random experi-
ment.

FExample:
Random experiment: Toss a coin once.
Sample space: Q) ={head, taif

Definition: A random variable, X, is defined as a function from the sample space
to the real numbers: X : 2 — R.

That is, @ random variable assigns a real number to every possibiemetof a
random experiment.

Example:
Random experiment: Toss a coin once.
Sample space: Q) = {head, tail}.
An example of a random variable: X : 2 — R maps “head” — 1, “tail” — 0.

Essential point: | A random variable is a way of producing random real numbers.
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1.2 Stochastic Processes

Definition: A stochastic process is a family of random variables,
{X(t) : t € T}, wheret usually denotes time. That is, at every tiimi@a the set
T, a random numbex (t) is observed.

Definition: {X(t) : t € T} is a discrete-time process if the setT is finite or
countable.

In practice, this generally means 7' = {0,1,2,3,...}
Thus a discrete-time process is { X (0), X (1), X(2), X(3),...}: a random number
associated with every time 0, 1, 2, 3, ...

Definition: {X(t) : t € T} is a continuous-time process if 7' iS not finite or
countable.

In practice, this generally means 7' = [0, 00), orT = [0, K] for somekK .

Thus a continuous-time process {X(t) : t € T} has a random numbex (t)
associated with every instant in time.

(Note that X (t) need not change at every instant in time, but it is allowed to
change at any time; i.e. not just at t =0, 1,2, ..., like a discrete-time process.)

Definition: The state space, S, is the set of real values that(t) can take.

Every X(t) takes a value in R, but S will often be a smaller set: S C R. For
example, if X (¢) is the outcome of a coin tossed at time ¢, then the state space

is S = {0, 1}.

Definition: The state space S is discrete if it is finite or countable.
Otherwise it is continuous.

The state space S is the set of states that the stochastic process can be in.
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For Reference: Discrete Random Variables

1. Binomial distribution

Notation: X ~ Binomial(n, p).

Description: number of successes in n independent trials, each with proba-
bility p of success.

Probability function:

>px(1 —p)"* for x=0,1,...,n.

Mean: E(X) = np.

Variance: Var(X) = np(l — p) = npq, where ¢ =1 — p.

Sum: If X ~ Binomial(n,p), Y ~ Binomial(m, p), and X and Y are
independent, then

X +Y ~ Bin(n +m, p).

2. Poisson distribution

Notation: X ~ Poisson(\).

Description: arises out of the Poisson process as the number of events in a
fixed time or space, when events occur at a constant average rate. Also
used in many other situations.

)\IL’
Probability function: fy(z)=P(X =2) =~

for x=0,1,2,...
x!

Mean: E(X) = A\
Variance: Var(X) = .

Sum: If X ~ Poisson(\), Y ~ Poisson(u), and X and Y are independent,
then

X +Y ~ Poisson(A + p).
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3. Geometric distribution

Notation: X ~ Geometric(p).

Description: number of failures before the first success in a sequence of in-
dependent trials, each with P(success) = p.

Probability function: fy(z)=P(X =2z)=(1—-p)'p for z=0,1,2,...

1—
Mean: E(X) = i g, where ¢ =1 — p.
p p
1—
Variance: Var(X) = 2p = %, where ¢ =1 —p.
p p

Sum: if Xj,..., X} are independent, and each X; ~ Geometric(p), then

X1+ ...+ Xj ~ Negative Binomial(k, p).

4. Negative Binomial distribution

Notation: X ~ NegBin(k,p).

Description: number of failures before the kth success in a sequence of in-

dependent trials, each with P(success) = p.

Probability function:

k —1
fX(x):IP’(X:x):< i )pk(l—p)m for z=0,1,2,...
x
k(1 — k
Mean: E(X) = ML= p) = —q, where ¢ =1 — p.
p p
1—
Variance: Var(X) = LQP) = k_;], where ¢ = 1 — p.
p p
Sum: If X ~ NegBin(k, p), Y ~ NegBin(m, p), and X and Y are independent,

then
X +Y ~ NegBin(k +m, p).
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5. Hypergeometric distribution

Notation: X ~ Hypergeometric(N, M, n).

Description: Sampling without replacement from a finite population. Given
N objects, of which M are ‘special’. Draw n objects without replacement.
X is the number of the n objects that are ‘special’.

Probability function:

B (M)(ZYI Jx\/[) for {a::max(O, n+ M — N)

(]X) to x = min(n, M).
M
Mean: E(X) = np, where p = w
N M
Variance: Var(X) = np(1 (N ) where p = N

6. Multinomial distribution

Notation: X = (Xi,..., X}) ~ Multinomial(n; p1,ps, ..., Dr)-

Description: there are n independent trials, each with k& possible outcomes.
Let p; = P(outcome i) for i = 1,... k. Then X = (Xy,..., X}), where X;
is the number of trials with outcome ¢, for e =1, ..., k.

Probability function:

n! P

fx(@)=P(Xy =z1,..., X) =13) = PRLRCE Py

5131'

3 k
for x; € {0,...,n} V,; with le =n, and where p; > 0V}, sz- =1.
i=1 i=1
Marginal distributions: X; ~ Binomial(n,p;) fori=1,... k.
Mean: E(X;) =np; fori=1,... k.

Variance: Var(X;) =np;(1 —p;), fori=1,... k.

Covariance: cov(X;, X;) = —np;p;, for all i # j.
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Continuous Random Variables

1. Uniform distribution

Notation: X ~ Uniform(a,b).

1
Probability density function (pdf): fx(z)= A for a <z <D.
—a
Cumulative distribution function:
FX(x):]P’(XSJ:):x_a for a <x <D.
—a

Fx(z) =0 for z < a, and Fx(z) =1 for x > b.

b
Mean: E(X) = a—2|— :

(b—ay

Variance: Var(X) = 5

2. Exponential distribution

Notation: X ~ Exponential()\).

Probability density function (pdf): fx(z)= e ** for 0 <z < oo.

Cumulative distribution function:
Fx(z)=P(X <z)=1-—¢"*" for 0 <z < o0.
Fx(z) =0 for z <0.

Mean: E(X) =

1
N
1

Variance: Var(X) = PeR

Sum: if Xi,..., X} are independent, and each X; ~ Exponential()), then
X1+ ...+ X ~ Gammal(k, \).
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3. Gamma distribution

Notation: X ~ Gammal(k, \).

Probability density function (pdf):

fx(z) = %ajkle/\x for 0 <z < o0,

where I'(k) = [;" y" e ¥ dy (the Gamma function).

Cumulative distribution function: no closed form.

Mean: E(X) = ;

k
pu— p.
Sum: if X;,..., X, are independent, and X; ~ Gamma(k;, A), then

Variance: Var(X)

X1+ ...+ X, ~ Gamma(ky + ...+ kp, A).

4. Normal distribution

Notation: X ~ Normal(u, 0?).

Probability density function (pdf):

1 2 2
fx(x) = == /2% for — 00 < 1 < 0.

V2mo?

Cumulative distribution function: no closed form.

Mean: E(X) = p.

Variance: Var(X) = o

Sum: if X;,..., X, are independent, and X; ~ Normal(y;, ¢?), then

X1+ ...+ X, ~ Normal(pg + ... + py, J%—I—...—I—Jz).
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Probability Density Functions

fx(x)
Uniform(a, b) '
b—a
T
a b
Exponential(\)
Gamma(k, \)

Normal(u, o?)
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Chapter 2: Probability

The aim of this chapter is to revise the basic rules of probability. By the end
of this chapter, you should be comfortable with:

e conditional probability, and what you can and can’t do with conditional
expressions;

e the Partition Theorem and Bayes’ Theorem:;

e First-Step Analysis for finding the probability that a process reaches some
state, by conditioning on the outcome of the first step;

e calculating probabilities for continuous and discrete random variables.

2.1 Sample spaces and events

Definition: A sample space, (2, is a set of possible outcomes of a random
experiment.

Definition: An event, A, is a subset of the sample space.
This means that event A is simply a collection of outcomes.

Example:

Random experiment: Pick a person in this class at random.
Sample space: Q) = {all people in class
Event A: A = {all males in class

Definition: Event A occurs if the outcome of the random experiment is a member
of the setA.

In the example above, event A occurs if the person we pick is male.
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2.2 Probability Reference List

The following properties hold for all events A, B.

e P())=0.

e 0 <P(A) <1.

e Complement: P(A) =1—P(A).

e Probability of a union: P(AU B) =P(A) +P(B) — P(AN B).
For three events A, B, C"

P(AUBUC) = P(A)+P(B)+P(C)-P(ANB)—P(ANC)—P(BNC)+P(ANBNC) .

If A and B are mutually exclusive, then P(AU B) = P(A) + P(B).

P(AN B)
P(B)
e Multiplication rule: P(AN B) =P(A| B)P(B) =P(B|A)P(A).

e Conditional probability: P(A|B) =

e The Partition Theorem: if By, B,, ..., B,, form a partition of {2, then

P(A) = zm:IP’(A NB;) = zm:IP’(A | B;))P(B;) for any event A.

i=1 i=1
As a special case, B and B partition €, so:
P(A) = P(ANB)+P(ANB)
= P(A|B)P(B) +P(A|B)P(B) for any A, B.
P(A|B)P(B)
P(A)
More generally, if By, Bo, ..., B,, form a partition of €2, then

_ P(A[Bj)P(B)) -
P(B;|A) = ST B(A| B)P(By) for any j.

e Bayes’ Theorem: P(B|A) =

e Chains of events: for any events A;, Ay, ..., Ay,

P(ANAsN. . .NA,) = P(A)P(As | A)DP(As | AN AL ... B(Ay | AniN.. .M A,



2.3 Conditional Probability

Suppose we are working with sample space
) = {people in class}. I want to find the
proportion of people in the class who ski. What do I do?

Count up the number of people in the class who ski, and divideéhb total
number of people in the class.

number of skiers in class
total number of people in class

P(person skis=

Now suppose I want to find the proportion of females in the class who ski.
What do I do?

Count up the number of females in the class who ski, and dibjd¢he total
number of females in the class.

number of female skiers in class

P(female skiy = total number of females in class

By changing from asking about everyone to asking about females only, we have:

e restricted attention to the set of females only,

or: reduced the sample spaltem the set of everyone to the set of females,

or: conditionedon the even{female$.

We could write the above as:

number of female skiers in class
total number of females in class

P(skis| femalg =

Conditioning is like changing the sample space: we are now working in
a new sample space of females in class.
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In the above example, we could replace ‘skiing’ with any attribute B. We have:

# skiers in class # female skiers in class

P(skis) = P(skis | fi le) =
(skis) # class 7 (skis | female) # females in class
SO:
P(B) — # B’s in cl.ass |
total # people in class
and:

P(B | female) = # female B’s in class

total # females in class

_ # in class who are B and female

# in class who are female

Likewise, we could replace ‘female’ with any attribute A:

number in class who are B and A

P(B|A) =

number in class who are A

This is how we get the definition of conditional probability:

_ P(Band 4) P(BNA)
PB1A) = P(A). P(A)

By conditioning on event A, we have changed the sample space to the set’sf
only.

Definition: Let A and B be events on the same sample space: so A C Q andB C ).
The conditional probability of event B, given event A, is

P(B N A)

P(B|A) = =55
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Multiplication Rule: (Immediate from above). For any events A and B,

P(ANB) = P(A| B)P(B) = P(B| A)P(A) = P(B N A).

Conditioning as ‘changing the sample space’

The idea that “conditioning” = “changing the sample spacein be very helpful
in understanding how to manipulate conditional probabilities.

Any ‘unconditional’ probability can be written as a conditional probability:
P(B) =P(B|Q).

Writing P(B) = P(B|€2) just means that we are looking for the probability of
event B, out of all possible outcomes in the set (2.

In fact, the symbol P belongs to the set ): it has no meaning without ().
To remind ourselves of this, we can write

P =P,
Then P(B) = P(B|Q) = Py(B).

Similarly, P(B | A) means that we are looking for the probability of event B,
out of all possible outcomes in the set A.

So A is just another sample space. Thus we can manipulate conditional proba-
bilitiesP( - | A) just like any other probabilities, as long &g always stay inside
the same sample spade

The trick: Because we can think of A as just another sample space, let’s write

P 1A —P.(. Note: NOT
(-14) a(+) standard notation!

Then we can use P, just like P, as long as we remember to keep the
A subscript on EVERY P that we write.



THE UNIVERSITY
OF AUCKLAND

NEW ZEALAND
Te Whare Wananga o Tamaki Makaurau 2 1

This helps us to make quite complex manipulations of conditional probabilities
without thinking too hard or making mistakes. There is only one rule you need

to learn to use thi

(Proof: Exercise).

s tool effectively:

P.(B|C)=P(B|CnNA)foranyA, B, C.

The rules:

P(-]A) =Pa(-)
P,(B|C)=P(B|CNA)forany A, B, C.

Examples:

1. Probability of a union. In general,

P(BUC) =P(B)+P(C) —P(BNC).

SO, ]P)A(BUC)

Thus, P(BUC

— P,(B) +P,(C) — Po(BNC).

| A) = P(B| A) + P(C|A) — P(BNC|A).

2. Which of the following is equal to P(BN C'| A)?

(a) P(B|C N A).

P(B|C)
(b) P(A)

Solution:

Thus the correct

(c) P(B|C N A)P(C| A).

(d) P(B|C)P(C| A).

P(BNC|A) = P,(BNC)
= P.(B[C)P4(C)
= P(B|CNA)PC|A.

answer is (c).
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3. Which of the following is true?
(a) P(B|A)=1—-P(B|A). (b) P(B|A) =P(B) —P(B|A).

Solution:
P(B|A) =P, B)=1-P4,B)=1-P(B|A).

Thus the correct answer is (a).

4. Which of the following is true?
(a) P(BNA) =P(A) —P(BNA). (b)) P(BNA)=P(B)—P(BNA).

Solution:

Thus the correct answer is (a).

5. True or false: P(B|A) =1—P(B|A)?

Answer: False.P(B|A) = P,(B). Once we havé&,, we are stuck with it!
There is no easy way of converting frdm toP ;. or anything else. Probabilities
in one sample spac® () cannot tell us anything about probabilities in &elient
sample spacéPg).

Exercise: if we wish to express P(B|A) in terms of only B and A, show that
P(B) —P(B|A)P(A
b | 4)  PB) = PLE [ PCD)

1 —P(A)

Note that this does not simplify nicely!
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2.4 The Partition Theorem (Law of Total Probability)

Definition: Events A and B are mutually exclusive, or disjoint, if AN B = 0.

This means events A and B cannot happen together. If A happens, it excludes

B from happening, and vice-versa. Q

A

o C

If A and B are mutually exclusive, P(AU B) = P(A) + P(B).
For all other A and B, P(AU B) =P(A)+P(B) —P(AN B).

-

Definition: Any number of events By, By, ..., B; are mutually exclusive if every
pair of the events is mutually exclusive: ie. B; N B; = () for alli, j withi # j.
Q

Definition: A partition of Q is a collection of mutually exclusive events whose
union isf.

That is, sets By, Bo, ..., By form a partition of € if

B;NB; = 0 forall i,j with i # j,

k
and UBZ- — BiUByU...UB, = Q.
=1

Bi, ..., By form a partition of € if they have no overlap
and collectively cover all possible outcomes.
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Examples:

B

Partitioning an event A

Any set A can be partitioned: it doesn’t have to be ().
In particular, if By, ..., By form a partition of €2, then (AN By),..., (AN By)
form a partition of A.

Q

By

B, O By
B3

Theorem 2.4: The Partition Theorem (Law of Total Probability)

Let By, ..., B, form a partition ok). Then for any event A,

P(A) =Y BANB) =3 B(A|B)B(B)

Both formulations of the Partition Theorem are very widely used, but especially
the conditional formulation > " P(A | B;)P(B;).
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Intuition behind the Partition Theorem:

The Partition Theorem is easy to understand because it simply states that “the
whole is the sum of its parts.”

AN By AN By

-  m :
. Kl
-

AN B3 AN By

P(A) = ]P)(A N Bl) + ]P)(A N BQ) + P(A N Bg) + P(A N B4)

2.5 Bayes’ Theorem: inverting conditional probabilities

Bayes’ Theorem allows us to “invert” a conditional statement, ie. t0 express
P(B|A) interms ofP(A| B).

Theorem 2.5: Bayes’ Theorem

P(A| B)P(B)

For any events A and B: P(B|A) = PlA)

Proof:

P(BNA) = P(ANB)
P(B|A)P(A) = P(A|B)P(B) (multiplication rule)

P(B|A) — P(AHL@?(B). 0
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Extension of Bayes’ Theorem

Suppose that By, Bo, ..., B, form a partition of {2. By the Partition Theorem,

m

P(A) = Z P(A[B;)P(B;).

1=1

Thus, for any single partition member B;, put B = B; in Bayes’ Theorem
to obtain:

A|B))P(B;)  P(A|B;)P(B))
P(A) - L PA|B)P(B:)

P(5; | 4) = 2

By /}Bg
N

B3 B4

Special case: m = 2

Given any event B, the events B and B form a partition of Q. Thus:

P(B| A) = P(A| B)P(B)
~ P(A|B)P(B) +P(A|B)P(B)

Example: In screening for a certain disease, the probability that a healthy person
wrongly gets a positive result is 0.05. The probability that a diseased person
wrongly gets a negative result is 0.002. The overall rate of the disease in the
population being screened is 1%. If my test gives a positive result, what is the
probability I actually have the disease?
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1. Define events:

D = {have disease = D = {do not have the disease

P = {positivetesf =~ N = P = {negative test

2. Information given:

False positive rate is 0.05= P(P|D) = 0.05
False negative rate is 0.002& P(N|D) = 0.002
Disease rate is 1% = P(D) = 0.01.

3. Looking forP(D | P):

P(P | D)P(D)

We have P(D|P) = P(P)

Now P(P|D) = 1-P(P|D)
— 1-P(N|D)
= 1-0.002
— 0.998.

Also  P(P) = P(P|D)P(D)+P(P|D)P(D)
— 0.998 x 0.01 + 0.05 x (1 — 0.01)
— 0.05948.

Thus
~0.998 x 0.01

B(D|P) =~ rqus = 0-168.

Given a positive test, my chance of having the disease is155%.
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2.6 First-Step Analysis for calculating probabilities in a process

In a stochastic process, what happens at the next step depends upon the cur-
rent state of the process. We often wish to know the probability of eventually
reaching some particular state, given our current position.

Throughout this course, we will tackle this sort of problem using a technique
called First-Step Analysis.

The idea is to consider all possible first steps away from the current state. We
derive a system of equations that specify the probability of the eventual outcome
given each of the possible first steps. We then try to solve these equations for
the probability of interest.

First-Step Analysis depends upon condzitional probability and the Partition
Theorem. Let Sy,. .., Sk be the k possible first steps we can take away from our
current state. We wish to find the probability that event E happens eventually.
First-Step Analysis calculates P(FE) as follows:

P(E) = P(E|S))P(S)) + . .. + P(E|Sp)P(Sy).

Here, P(S1),...,P(Sk) give the probabilities of taking the different first steps
1,2,.. . k.

Example: Tennis game at Deuce.

Venus and Serena are playing tennis, and have reached
the score Deuce (40-40). (Deuce comes from the French
word Deuzx for ‘two’, meaning that each player needs to win two consecutive
points to win the game.)

For each point, let:
p = P(Venus wins point), q = 1 — p = P(Serena wins point).
Assume that all points are independent.

Let v be the probability that Venus wins the game eventually, starting from
Deuce. Find v.
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q
p VENUS P VENUS
’//j::::i;;;:B(A) = WINS (W)

| DEUCE (D)]

VENUS VENUS
q\' BEHIND (B) g ™| LOSES (L)

P

Use First-step analysis. The possible steps starting freocP are:

1. Venus wins the next point (probability: move to state A;

2. Venus loses the next point (probability move to state B.

LetV be the event that Venus wins EVENTUALLY starting from Deusey =
P(V'| D). Starting from Deuce (D), the possible steps are to statasdBa So:

v = P(VenuswingD) = P(V|D)
= Pp(V)
= Pp(V[A)Pp(A) +Pp(V|B)Pp(B)
= P(V[Ap+P(V[B)g.  (+)

Now we need to find(V | A), andP(V | B), again using First-step analysis:
P(VA) = P(V|W)p+P(V|D)g

= Ixp+vxg
= p+ qu. (a)

Similarly,
P(V[B) = P(V|L)g+P(V|D)p

= O0xqg+vXxp
= pv. ()
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Substituting (a) and (b) intE-),

v = (p+qu)p+(pv)g
v o= p2+2pqv
v(l—2pq) = p°
p2

1—2pq

v =

Note: Because p+ g =1, we have:

1=(p+4q)*=p*+¢ + 2pqg.

So the final probability that Venus wins the game is:

p? p’

v = = .

1—2pq p*+¢°
Note how this result makes intuitive sense. For the game to finish from Deuce,
either Venus has to win two points in a row (probability p?), or Serena does
(probability ¢*). The ratio p?/(p® + ¢*) describes Venus’s ‘share’ of the winning

probability:.

First-step analysis as the Partition Theorem:

Our approach to finding v = P(Venus wins) can be summarized as:

P(Venuswing = v = ) P(V|first stepP(first step .
first steps

First-step analysis is just the Partition Theorem:
The sample space §8= { all possible routes from Deuce to the end

An example of a sample pointis: D +A—D—B—D — B — L.
Another exampleis: D—B —D — A —W.

The partition of the sample space that we use in first-step analysis is:
Ry, = { all possible routes from Deuce to the end that start With> A}
R, = { all possible routes from Deuce to the end that start With> B}
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Then first-step analysis simply states:
P(V) = P(V[R)P(L1) +P(V | Ro)P(Ry)
= Pp(V[A)Pp(A) +Pp(V |B)Pp(B).

Notation for quick solutions of first-step analysis problems

Defining a helpful notation is central to modelling with stochastic processes.
Setting up well-defined notation helps you to solve problems quickly and easily.
Defining your notation is one of the most important steps in modelling, because
it provides the conversion from words (which is how your problem starts) to
mathematics (which is how your problem is solved).

Several marks are allotted on first-step analysis questions for setting
up a well-defined and helpful notation.

q

p VENUS P VENUS
AHEAD (A) = WINS (W)
DEUCE (D
VENUS VENUS
R BEHIND (B) | g ™| LOSES (L)

p

Here is the correct way to formulate and solve this first-step analysis problem.

Need the probability that Venus wins eventually, startirmgnf Deuce.
1. Define notation: let

vp = PP(Venus wins eventually start at state D
va = P(Venus wins eventually start at state A

vp = P(Venus wins eventually start at state B

2. First-step analysis:
P anaysis: . — pua+ qup (a)

vg = px1l+qup (b)
vp = pup+qx0 (¢)
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3. Substitute (b) and (c) in (a):

= wvp = p(p+qup)+ q(pvp)

vp(l—pg—pq) = p°

p2

1 —2pq

UD

as before.

Special Process: the Gambler’s Ruin

This is a famous problem in probability. A gambler
starts with $x. She tosses a fair coin repeatedly.

If she gets a Head, she wins $1. If she gets a Tail,
she loses $1.

The coin tossing is repeated until the gambler has either $0 or $N, when she
stops. What is the probability of the Gambler’s Ruin, i.e. that the gambler
ends up with $07

1/2 1/2 1/2 1/2 1/2 1/2
0 1] 2|—{ 3]--- > -l }-->= —»IN
\ WA W W S SR S
1/2 1/2 1/2 1/2 1/2 1/2

Wish to find
P(ends with$0| starts with$zx) .

Define event

R = {eventual Rui = {ends with$0} .
We wish to find P(R | starts with$x).
Define notation:

p. = P(R| currently has$x) forxz=0,1,...,N.



THE UNIVERSITY
OF AUCKLAND

NEW ZEALAND
Te Whare Wananga o Tamaki Makaurau 33

Information given:

po = P(R| currently hasf0) = 1,
py = P(R | currently hassN) = 0.

First-step analysis:
p. = P(R|hass$z)

_ %]P’(R | has$(z + 1)> + %IP’(R | has$(x — 1))

= %pxﬂ =+ %prl (*)
True forr = 1,2,..., N — 1, with boundary conditiong, = 1, py = 0.

Solution of difference equation (x):

Px = %px—i—l + %px—l fOI‘.T}:l,Q,---,N_l;
pp = 1 (%)
py = 0.

We usually solve equations like this using the theory of 2nd-order difference
equations. For this special case we will also verify the answer by two other
methods.

1. Theory of linear 2nd order flerence equations

Theory tells us that the general solutionef isp, = A+ Bx for some constants
A, B and forx = 0,1,...,N. Our job is to findA and B using the boundary
conditions:

p. = A+ Bux for constantsA andB and forx =0,1,...,N.
So

p = A+Bx0=1 = A=1,;

1
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So our solution is: pz:A+Bx:1—% for t =0,1,...,N.

For Stats 325, you will be told the general solution of the 2nd-order difference
equation and expected to solve it using the boundary conditions.

For Stats 721, we will study the theory of 2nd-order difference equations. You
will be able to derive the general solution for yourself before solving it.

Question: What is the probability that the gambler wins (ends with $N),
starting with $x?

P(ends With$N> —1- P(ends with$o) —1—p, = % for + =0,1,...,N.

2. Solution by inspection

The problem shown in this section is the symmetric Gambler’s Ruin, where
the probability is % of moving up or down on any step. For this special case,
we can solve the difference equation by inspection.

We have: ) 1
Pz = 3Pz+1 + 3Dz—1

1 1 _ 1 1

5Pz + 5P = 5Pax+1 t+ 35Da—1
Rearranging:  p, 1 —p: = Pz — Dot1- Boundariesp, = 1,py = 0.
There areN steps to go down A / p=1
fromp, =1topy = 0. T SO 0 0 _
Each step is the same size, e (Bea=Bo) f;rgzs&e
because o------1/

\J
(Pe—1 — P2) = (Px — puy1) for all z. - -----
So each step has sizgN, / p=0
= py=1,pp=1-1/N, | | . -
p2=1—2/N, etc. 0 1 2 N

So

pe=1— % as before.
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3. Solution by repeated substitution.

In principle, all systems could be solved by this method, but it is usually too
tedious to apply in practice.

Rearrangéx) to give:

Pzt

= (z=1) D2

(z=2) D3

(z =3) D4

giving  pa

likewise PN

Boundary condition:
Substitute inx):

Px

Pz

= 2Py — Pa-1
= 2p1—1 (recallpy = 1)

= 2pp—p1=2(2p1—1) —p1=3p1 — 2

= 2p3—p2=23p1—2)— (2p1— 1) =4p; — 3 etc

in general,  (xx)

= ap;1— (x —1)
= Np;— (N —1) at endpoint.

pvn=0 = Np—(N-1)=0 = p=1-1/N.

= app — (z—1)
) e
r—y—r+1

= 1-% as before. O

2.8 Independence

Definition: Events A and B are statistically independent if and only if

P(AN B) = P(A)P(B).

This implies that A and B are statistically independent if and only if

P(A|B) = P(A).

Note: 1If events are physically independent, they will also be statistically indept.
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For interest: more than two events

Definition: For more than two events, Ay, A, ..., A,, we say that Ay, As,..., A,
are mutually independent if

P (ﬂ AZ-) = [[P(4) for ALL finite subsets] C {1,2,...,n}.

1eJ e

Example: events Ay, Ay, A3, A4 are mutually independent if
i) P(A,NA;NA) =P(A)P(A;)P(A) for all 4, j, k that are all different; AND
iii) P(A; N Ay N A3 Ay) = P(A)P(As)P(A3)P(Ay).

Note: For mutual independence, it is not enough to check that P(4; N A4;) =
P(A;)P(A;) for all i # j. Pairwise independence does not imply mutual inde-
pendence.

2.9 The Continuity Theorem

The Continuity Theorem states that probability is a continuous set function:

Theorem 2.9: The Continuity Theorem

a) Let Ay, Ay, ... be an increasing sequence of events: i.e.

A CAC...CACALC... .

Then
IP’( lim An> — lim P(A,).

n— 00 n— 00

o0
Note: because A; C A, C ..., we have: lim A, = U A,.
n— o0
n=1
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b) Let By, Bs, ... be a decreasing sequence of events: i.e.

BiDBy2...2B,2Bpi12....

Then
IP( lim Bn) — lim P(B,).

n— 00 n— o0

n— 0o

Note: because B; O By D ..., we have: lim B, = ﬂ B,.
n=1

Proof (a) only: for (b), take complements and use (a).

Define C; = Ay, and C; = A\A;_1 fori =2,3,.... Then Cy, (s, ... are mutually
exclusive, and |, C; = U;_; 4i, and likewise, | J;2, C; = U=, 4.

Thus
P(lim A,) =P (U Ai> =P (U C’i) = Z]P’(C’Z-) (C; mutually exclusive)
n—oo
i=1 i=1 i=1

= Jim ) PG




THE UNIVERSITY
OF AUCKLAND

NEW ZEALAND
Te Whare Wananga o Tamaki Makaurau 38

2.10 Random Variables

Definition: A random variable, X, is defined as a function from the sample space
to the real numbersx : Q) — R.

A random variable therefore assigns a real number to every possible outcome of
a random experiment.

A random variable is essentially a rule or mechanism for generating random real
numbers.

The Distribution Function

Definition: The cumulative distribution function of a random variable X is
given by

Fy(z) = P(X < )

Fx(x) is often referred to as simply the distribution function.

Properties of the distribution function

1) Fx(—o0) =P(X < —0) =0.
Fx(+00) =P(X <o0) =1.

2) Fx(z) is a non-decreasing function of x:
if r1 < X9, thean(xl) < FX(.I'Q).

3) If b > a, then P(a < X <b) = Fx(b) — Fx(a).

4) Fx is right-continuous: i.e. limyjo Fx(z + h) = Fx(x).
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2.11 Continuous Random Variables

Definition: The random variable X is continuous if the distribution functior¥'x ()
Is a_continuousunction.

In practice, this means that a continuous random variable takes values in a
continuous subset @&t: e.g. X : Q — [0,1] or X : Q — [0, 00).

Probability Density Function for continuous random variables

Definition: Let X be a continuous random variable with continuous distribution
function Fx(z). The probability density function (p.d.f.) of X is defined
as

d

fx(x) = Fx(z) = ——(Fx())

The pdf, fx(z), gives the shapeof the distribution of X.

Normal distribution Exponential distribution Gamma distribution
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By the Fundamental Theorem of Calculus, the distribution function Fy(z) can
be written in terms of the probability density function, fx(x), as follows:

Fx(a) = [*_ fx(u) du

Endpoints of intervals

For continuous random variables, every point z has P(X = z) = 0. This
means that the endpoints of intervals are not important for continuous random
variables.

Thus, P(a < X <b)=Pla< X <b)=Pa< X <b)=Pla<X <b).

This is only true for continuous random variables.

Calculating probabilities for continuous random variables

To calculate P(a < X < b), use either
P(a S X S b) = Fx(b) — Fx(a)

or

IP’(aSXSb):/be(x)dx

Example: Let X be a continuous random variable with p.d.f,
2072 forl <z < 2,
fx(z) = _
0 otherwise.

(a) Find the cumulative distribution function, Fx(x).
(b) Find P (X < 1.5).
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T T 9 —-177 2
a) Fx(x)= fx(u) du:/ 2u~ 2 du = { ul ] =2-= forl<az<2.
— 00 1 - 1 X
0 forx <1,
Thus Fx(z)=4¢ 2—-2 forl <z <2,
1 forx>2.
2 2

b) B(X < 1.5) = Fx(L5) =2 - — = =.

2.12 Discrete Random Variables

Definition: The random variable X is discrete if X takes values in a finite or count-
able subset dR: thus,X : Q — {1, x9,...}.

When X is a discrete random variable, the distribution function Fx(x) is a Step
function.
Fx ()

Probability function

Definition: Let X be a discrete random variable with distribution function Fyx(z).
The probability function of X is defined as

fx(l’) = P(X = .T})
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Endpoints of intervals

For discrete random variables, individual points can hav@(X = x) > 0.

This means that the endpoints of intervals ARE important for discrete rando
variables.

For example, if X takes values 0, 1,2, ..., and a, b are integers with b > a, then

Pla<X<b)=Pla—1<X<b)=Pa<X<btl)=Pla—1<X <b+1).

Calculating probabilities for discrete random variables

To calculate P(X € A) for any countable set A, use

P(X € A) =) P(X =u).

reA

Partition Theorem for probabilities of discrete random variables

Recall the Partition Theorem: for any event A, and for events By, Bo, ... that

form a partition of (2,
P(A) = Z P(A[By)P(B,).
y

We can use the Partition Theorem to find probabilities for random variables.
Let X and Y be discrete random variables.
e Define eventd asA = {X = z}.

e Define evenBB, asB, = {Y =y} fory = 0,1,2,... (or whatever value¥
takes).

e Then, by the Partition Theorem,

P(X =2)=> P(X=z|Y =yP(Y =y)
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2.13 Independent Random Variables

Random variables X and Y are independent if they have no effect on each
other. This means that the probability that they both take specified values
simultaneously is the product of the individual probabilities.

Definition: Let X and Y be random variables. The joint distribution function
of X and Y is given by

Fxy(z,y) =P(X <zandY <y)=P(X <z,Y <y).

Definition: Let X and Y be any random variables (continuous or discrete). X and
Y are independent if

FX7y($,y) = FX(.T})Fy(y) for ALL T,y € R.

If X and Y are discrete, they are independent if and only if their joint prob-
ability function is the product of their individual probability functions:

DiscreteX,Y are indept < P(X =z ANDY =y) =P(X =2)P(Y =y)
for ALL z,y
— fxvy(ilf, y) = f)((ilf)fy(y) for ALL z, Y.
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Chapter 3: Expectation and Variance

In the previous chapter we looked at probability, with three major themes:
1. Conditional probability: P(A| B).

2. First-step analysis for calculating eventual probabilities in a stochastic
process.

3. Calculating probabilities for continuous and discrete random variables.

In this chapter, we look at the same themes for expectation and variance.
The expectation of a random variable is the long-term average of the random
variable.

Imagine observing many thousands of independent random values from the
random variable of interest. Take the average of these random values. The
expectation is the value of this average as the sample size tends to infinity.

We will repeat the three themes of the previous chapter, but in a different order.

1. Calculating expectations for continuous and discrete random variables.

2. Conditional expectation: the expectation of a random variable X, condi-
tional on the value taken by another random variable Y. If the value of
Y affects the value of X (i.e. X and Y are dependent), the conditional
expectation of X given the value of Y will be different from the overall
expectation of X.

3. First-step analysis for calculating the expected amount of time needed to
reach a particular state in a process (e.g. the expected number of shots
before we win a game of tennis).

We will also study similar themes for variance.
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3.1 Expectation

The mean, expected value, or expectation of a random variable X is writ-
ten as E(X) or uy. If we observe NV random values of X, then the mean of the
N values will be approximately equal to E(X) for large N. The expectation is
defined differently for continuous and discrete random variables.

Definition: Let X be a continuous random variable with p.d.f. fx(z). The ex-
pected value of X is

E(X) = /_ " ofe(@) da.

oo

Definition: Let X be a discrete random variable with probability function fx(z).
The expected value of X is

E(X)=) zfx(x) =) aP(X =ux).

x

Expectation of g(X)

Let g(X) be a function of X. We can imagine a long-term average of g(X) just
as we can imagine a long-term average of X. This average is written as E(g(X)).
Imagine observing X many times (N times) to give results x1, zo, ..., zn. Apply
the function g to each of these observations, to give g(z1), ..., g(zx). The mean
of g(x1), g(x2), ..., g(xyn) approaches E(g(X)) as the number of observations N
tends to infinity:.

Definition: Let X be a continuous random variable, and let g be a function. The
expected value of ¢g(X) is

B(s00) = [ gl fxta)do

oo

Definition: Let X be a discrete random variable, and let g be a function. The
expected value of ¢g(X) is

E(9(X)) = > g(@)fx(x) = Y g(@)P(X = a).
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Expectation of XY: the definition of E(XY)

Suppose we have two random variables, X and Y. These might be independent,
in which case the value of X has no effect on the value of Y. Alternatively,
X and Y might be dependent. when we observe a random value for X, it
might influence the random values of Y that we are most likely to observe. For
example, X might be the height of a randomly selected person, and Y might
be the weight. On the whole, larger values of X will be associated with larger
values of Y.

To understand what E(XY') means, think of observing a large number of pairs
(x1,91), (T2,Y2), .-, (xn,yn). If X and Y are dependent, the value x; might
affect the value y;, and vice versa, so we have to keep the observations together
in their pairings. As the number of pairs N tends to infinity, the average
A le\il x; X y; approaches the expectation E(XY).

For example, if X is height and Y is weight, E(XY) is the average of (height
x weight). We are interested in E(XY") because it is used for calculating the
covariance and correlation, which are measures of how closely related X and Y
are (see Section 3.2).

Properties of Expectation

i) Let g and h be functions, and let @ and b be constants. For any random variable
X (discrete or continuous),

E{ag(X) + bh(X)} - aE{g(X)} v bE{h(X)}.

In particular,
E(aX +b) = aE(X) + b.

ii) Let X and Y be ANY random variables (discrete, continuous, independent, or

non-independent). Then
E(X+Y)=E(X)+E®Y).

More generally, for ANY random variables X7, ..., X,
E(Xl + ... —|—Xn) = E(Xl) + ... —I—E(Xn)
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iii) Let X and Y be independent random variables, and g, h be functions. Then

E(XY) = E(X)E(Y)
E(g(X)h(Y)) - E(g(X))E(h(Y)).

Notes: 1. E(XY)=E(X)E(Y) is ONLY generally true if X and Y are
INDEPENDENT.

2. If X and Y are independent, then E(XY) = E(X)E(Y). However, the
converse is not generally true: it is possible for E(XY) = E(X)E(Y) even
though X and Y are dependent.

Probability as an Expectation

Let A be any event. We can write P(A) as an expectation, as follows.
Define the indicator function:

1 ifeventA occurs,
=

0 otherwise

Then 14 is a random wvariable, and

E(la) = Y rP(Is=r)

Thus P(A) = E(14) for any eventA.
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3.2 Variance, covariance, and correlation

The variance of a random variable X is a measure of how Spread outt is.
Are the values of X clustered tightly around their mean, or can we commonly
observe values of X a long way from the mean value? The variance measures
how far the values of X are from their mean, on average.

Definition: Let X be any random variable. The variance of X is

varx) = ]E((X - NX)Q) — E(X?) — (E(X))?.

The variance is the mean squared deviatiar a random variable from its own
mean.

If X has high variance, we can observe values of X a long way from the mean.

If X has low variance, the values of X tend to be clustered tightly around the
mean value.

Example: Let X be a continuous random variable with p.d.f,

2072 forl <z < 2,
fx(x) =

0 otherwise.

Find E(X) and Var(X).

00 2 2
E(X):/ fo(x)dx:/1 T x2r ?de = /12x1da:

oo

2

= {210g(x)}
= 2log(2) — 2log(1)

= 2log(2).

1
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For Var X), we use
Var(X) = E(X?) — {E(X)}* .

Now
00 2 2
E(XQ):/ foX(a:)da::/ v x 20 % dr = / 2dx
—00 1 1
2
= |2
K
= 2x2—-—2x1
= 2.
Thus
VvarX) = E(X?) — {E(X)}?
— 2 {2l0g(2)}’
= 0.0782.
Covariance

Covariance is a measure of the association or dependence between two random
variables X and Y. Covariance can be either positive or negative. ( Variance is
always positive.)

Definition: Let X and Y be any random variables. The covariance between X
and Y is given by

COUX,Y) =E{(X — ux)(Y = jv) } = B(XY) — E(X)E(Y),
whereuy = E(X), py = E(Y).

1. cov(X,Y) will be positiveif large values of X tend to occur with large values
of Y, and small values of X tend to occur with small values of Y. For example,
if X is height and Y is weight of a randomly selected person, we would expect
cov(X,Y') to be positive.
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2. cov(X,Y) will be negativeif large values of X tend to occur with small values
of Y, and small values of X tend to occur with large values of Y. For example,
if X is age of a randomly selected person, and Y is heart rate, we would expect
X and Y to be negatively correlated (older people have slower heart rates).

3. If X and Y are independent, then there is no pattern between large values of
X and large values of Y, so cov(X,Y) = 0. However, cov(X,Y) = 0 does NOT
imply that X and Y are independent, unless X and Y are Normally distributed.

Properties of Variance

i) Let g be a function, and let a and b be constants. For any random variable X
(discrete or continuous),

Val‘{ag(X) + b} =a’ Var{g(X)}.

In particular, VanaX +b) = a*Van X).
ii) Let X and Y be independent random variables. Then
VanX +Y) = VvanX) + vany).

iii) If X and Y are NOT independent, then
VanX +Y) = VanX) + VanY) + 2coV X, Y).

Correlation (non-examinable)

The correlation coefficient of X and Y is a measure of the linear association
between X and Y. It is given by the covariance, scaled by the overall variability
in X and Y. As a result, the correlation coefficient is always between —1 and
+1, so it is easily compared for different quantities.

Definition: The correlation between X and Y, also called the correlation coefficient,

is given by

cov(X,Y)

corr(X,Y
( )= \/ Var(X) Var( )
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The correlation measures linear association between X and Y. It takes values
only between —1 and +1, and has the same sign as the covariance.

The correlation is £1 if and only if there is a perfect linear relationship between
X and Y, ie. corr(X,Y) =1 <= Y = aX + b for some constants a and b.

The correlation is 0 if X and Y are independent, but a correlation of 0 does
not imply that X and Y are independent.

Conditional Expectation and Conditional Variance

Throughout this section, we will assume for simplicity that X and Y are dis-
crete random variables. However, exactly the same results hold for continuous
random variables too.

Suppose that X and Y are discrete random variables, possibly dependent on
each other. Suppose that we fix Y at the value y. This gives us a set of
conditional probabilities P(X = x|Y = y) for all possible values x of X. This
is called the conditional distribution ofX, given thaty” = y.

Definition: Let X and Y be discrete random variables. The conditional probability

function of X, given that Y =y, is:

P(X =2 ANDY =y)
P(Y =y)
We write the conditional probability function as:

fxiy(@ly) =P(X =z[Y =y).

PX=z|Y =y =

Note: The conditional probabilities fx|y(2|y) sum to one, just like any other

probability function:
Y PX =z|Y=y) =) Py_py(X=2)=1,

using the subscript notation Pgyy—,y of Section 2.3.
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We can also find the expectation and variance of X with respect to this condi-
tional distribution. That is, if we know that the value of Y is fixed at y, then
we can find the mean value of X given that'Y takes the value y, and also the
variance of X given that Y =y.

Definition: Let X and Y be discrete random variables. The conditional expectation
of X, given that ¥ = y, is

pxy—y =B(X|Y =y) =) afx;y(z|y)

T

E(X|Y =y) is the mean value oKX, whenY is fixed aty.

Conditional expectation as a random variable

The unconditional expectation of X, E(X), is just @ number:
e.gEX =2 or EX =58,

The conditional expectation, E(X |Y = y), is a number depending an

If Y has an influence on the value of X, then Y will have an influence on the

average value of X. So, for example, we would expect E(X |Y = 2) to be
different from E(X |Y = 3).

We can therefore view E(X | Y = y) as a function ofy, sayE(X | Y=y) = h(y).

To evaluate this function, h(y) = E(X |Y = y), we:
i) fix Y at the chosen valug

ii) find the expectation ok whenY is fixed at this value.



THE UNIVERSITY
OF AUCKLAND

NEW ZEALAND
Te Whare Wananga o Tamaki Makaurau 53

However, we could also evaluate the function at a random value of Y:
i) observe a random value of
ii) fix Y at that observed random value;

iii) evaluatéE(X | Y = observed random value

We obtain a random variable E(X |Y) = h(Y').

The randomness comes from the randomness imot in X .

Conditional expectatiorii(X |Y'), is a random variable
with randomness inherited froln, not X .

1 with probability 1/8,

Example: Suppose Y = { 2 with probability 7/8,

2Y  with probability 3/4 ,

and X|Y = { 3Y with probability 1/4 .

Conditional expectation of X given Y =y is a number depending on y:

2 with probability 3 /4

MY =1, then: X|(Y =1) = { 3 with probability1/4

so E(X|Y=1)=2x24+3x1=2

4 with probability 3 /4

1Y =2, then: X (Y =2) = { 6 with probability1/4

SO E(X|Y =2)=4x34+6x71="12
0/4 ify=1

Th”SE(X‘Y:y):{ 18/4 if y = 2.

So E(X |Y =y) is a number depending ap or a function ofy.
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Conditional expectation of X given random Y is a random variable:

9/4 if Y = 1 (probability1/s),

From above, E(X|Y) = { 18/4 if Y = 2 (probability7/8).

9/4 with probability1/8,

So E(X|Y)= { 18/4 with probability7/8.

ThusE(X |Y) is a_random variable

The randomness IB(X | Y') is inherited fromY", not from X .

Conditional expectation is a very useful tool for finding the unconditional
expectation of X (see below). Just like the Partition Theorem, it is useful
because it is often easier to specify conditional probabilities than to specify
overall probabilities.

Conditional variance

The conditional variance is similar to the conditional expectation.
e Var(X |Y = y) is the variance of X, when Y is fixed at the value Y = y.

e Var(X |Y) is a random variable, giving the variance of X when Y is fixed
at a value to be selected randomly.

Definition: Let X and Y be random variables. The conditional variance of X,

given Y, is given by

Var(x | V) = E(x2|Y) - {E(X 1)} = B{(X — juxpp)? v

Like expectation, VarX | Y = y) is a number depending an(a function ofy),
while Van X |Y) is a_random variablevith randomness inherited from.
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Laws of Total Expectation and Variance

If all the expectations below are finite, then for ANY random variables X and
Y, we have:

i) | E(X)=Ey (IE:(X | Y)) Law of Total Expectation.

Note that we can pick anyv. Y, to make the expectation as easy as we can.

i) E(g(X)) = Ey (]E(g(X) | Y)) for any functiong.

i) | vanx) = IEY(Var(X | Y)) + Var (IE(X | Y))

Law of Total Variance.

Note: Ey and Vary denote expectation over Y and variance over Y,

i.e. the expectation or variance is computed over the distribution of the random
variable Y.

The Law of Total Expectation says that the total average is the average of case-
by-case averages.

e The total average is E(X),;
e The case-by-case averages are E(X |Y') for the diferent values of’,

e The average of case-by-case averages is the average ovey” of theY-case
averagesky (E(X | Y)).
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9/4 with probability 1/8,

Example: Inthe example above, we had: E(X |Y) = { 18/4 with probability 7/8

The total average is:

E(X) = EY{E(X\Y)} - % x

Proof of (i), (ii), (iii):

(i) is a special case of (ii), so we just need to prove (ii). Begin at RHS:

> 9@P(X =x]Y)

_ zlzgmwmy)

Y

= > Y g@)P(X =z|Y =y)P(Y =y)
= g(@)> P(X =z|Y =y)PY =y)

= Z g(x)P(X =) (partition rule)

— E(¢(X)) = LHS.

RHS = Ey [E(g(X)m} — Ey

PY =y)

(iii) Wish to prove Var(X) = Ey[Var(X | Y)] + Vary[E(X | Y)]. Begin at RHS:
Ey[Var(X |Y)] + Vary[E(X | Y)]

— By {E(X2 1Y) — (E(X| Y))Q} + ¢ Ey { [E(X | Y)]Q} - [Ey(E(if 1Y) 2

E(X) by part (i)
= Ey{E(X?|Y)} ~Ev {[E(X | Y)]*} + Ev {[E(X | Y)]*} — (EX)

E(X?) by part (i)

— E(X?) — (EX)?

= Var(X) = LHS. O
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Examples of Conditional Expectation and Variance

1. Swimming with dolphins

(b)

Fraser runs a dolphin-watch business.
Every day, he is unable to run the trip

due to bad weather with probability p,
independently of all other days. Fraser works every day except the bad-weather
days, which he takes as holiday.

Let Y be the number of consecutive days Fraser has to work between bad-
weather days. Let X be the total number of customers who go on Fraser’s trip
in this period of Y days. Conditional on Y, the distribution of X is

(X |Y) ~ Poisson(uY).

(a) Name the distribution of Y, and state E(Y) and Var(Y).

(b) Find the expectation and the variance of the number of customers Fraser
sees between bad-weather days, E(X) and Var(X).

Let ‘success’ be ‘bad-weather day’ and ‘failure’ be ‘worayd
ThenP(success= P(bad-weather= p.
Y is the number of failures before the first success.
So
Y ~ Geometri¢p).

Thus
EY) = —

Vary) — ~-2

We know(X |Y) ~ PoissoliuY): so
E(X|Y)=VvanX|Y)=puY.
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By the Law of Total Expectation:

E(X) = EY{E(X\Y)}
= Ey(uY)
= pEy(Y)

pd—p)

By the Law of Total variance:

vanx) = Ey(Var(X | Y)) + Vary (E(X | Y)>

= Ey (,LLY) + Vary (,LLY)
= ,LLEy(Y) + ,LL2 Vary(Y)
|- L (11—
- M(Tp> o ( p2p>
pd—p)lp+p)
p2

Checking your answer in R:

If you know how to use a statistical package like R, you can check your answer
to the question above as follows.

V V V V V V V V V

#
it

Pick a value for p, e.g. p =

o

2.
Pick a value for mu, e.g. mu = 25
Generate 10,000 random values of Y = Geometric(p = 0.2):
<- rgeom (10000, prob=0.2)

Generate 10,000 random values of X conditional on Y:
use (X | Y) ~ Poisson(mu * Y) ~ Poisson(25 * Y)
<- rpois (10000, lambda = 25%y)
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> # Find the sample mean of X (should be close to E(X)):
> mean (x)

[1] 100.6606

>

> # Find the sample variance of X (should be close to var(X)):
> var(x)

[1] 12624.47

>

> # Check the formula for E(X):

>25 % (1 -0.2) /0.2

[1] 100

>

> # Check the formula for var(X):

>25 % (1 -0.2) * (0.2 +25) /0.272

[1] 12600

The formulas we obtained by working give E(X) = 100 and Var(X) = 12600.
The sample mean was T = 100.6606 (close to 100), and the sample variance
was 12624.47 (close to 12600). Thus our working seems to have been correct.

RATIONAL BANK OF REMUERA

2. Randomly stopped sum

This model arises very commonly in stochastic
processes. A random number N of events occur,
and each event ¢ has associated with it some cost,
penalty, or reward X;. The question is to find the
mean and variance of the total cost / reward:

T =X1+Xo+ ...+ Xy.

The difficulty is that the number N of terms in the sum is itself random.

Ty is called a randomly stopped sum: it is a sum &f’'s, randomly stopped at
the random number a¥ terms.

FExample: Think of a cash machine, which has to be loaded with enough money to
cover the day’s business. The number of customers per day is a random number
N. Customer ¢ withdraws a random amount X;. The total amount withdrawn
during the day is a randomly stopped sum: Ty = X; + ...+ Xy.
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Cash machine example

The citizens of Remuera withdraw money from a cash machine according to the
following probability function (X):
Amount, z ($) | 50 100 200
P(X =x) |03 05 0.2

The number of customers per day has the distribution N ~ Poisson(\).

Let Ty = X1+ Xs + ...+ Xy be the total amount of money withdrawn in
a day, where each X; has the probability function above, and X;, X, ... are
independent of each other and of V.

Ty is a randomly stopped sum, stopped by the random number of N customers.

(a) Show that E(X) = 105, and Var(X) = 2725.

(b) Find E(Ty) and Var(7Ty): the mean and variance of the amount of money
withdrawn each day.

Solution

(a) Exercise.

(b) LetTy = S_N | X;. If we knew how many terms were in the sum, we could easily
findE(Ty) and Va(Ty) as the mean and variance of a sum of independent r.v.s.

So ‘pretend’ we know how many terms are in the sum: i.e. camnddn N .

E(Tv|N) = E(Xi+Xo+...+ Xy |N)
= E(X1+Xo+ ...+ Xy)
(because alK;s are independent o¥)
= E(X))+E(Xs) +... +E(Xy)
whereN is now considered constant;
(we do NOT need independenceXfs for this)
= N xE(X) (because alK;’s have same meah,( X))
= 105N.
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Similarly,

VarnTy |N) = VanX;+ X+ ...+ Xy |N)
= VanX;+ Xo+ ...+ Xy)
whereN is now considered constant;
(because alK;’s are independent a¥)
= VanX;)+ vanXs)+...+ VanXy)
(we DO need independence Xf’s for this)
= N x VanX) (because alK;’s have same variance, \(af))
= 2725N.

So

E(Tv) = Ey{E(Tx|N)}
— Ex(105N)
— 105Ex(N)
— 105,

becauseV ~ Poissof\) SOE(N) = \.
Similarly,

VanTy) = Ex { van(Ty | N)} + Vary { E(Ty | N)}
— Ry {2725N} + Vary {105N}
= 2725ExN(N) + 105*Vary (N)
— 2725) + 11025
— 13750,

becauseV ~ Poissofi\) SOE(N) = VarnN) = .
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Check in R (advanced)

\4

# Create a function tn.func to calculate a single value of T_N

\4

# for a given value N=n:

A\

tn.func <- function(n){
sum(sample(c(50, 100, 200), n, replace=T,
prob=c(0.3, 0.5, 0.2)))

> # Generate 10,000 random values of N, using lambda=50:
> N <- rpois (10000, lambda=50)
> # Generate 10,000 random values of T_N, conditional on N:
> TN <- sapply(N, tn.func)
> # Find the sample mean of T_N values, which should be close to
> # 105 * 50 = 5250:
> mean (TN)

[1] 5253.255

> # Find the sample variance of T_N values, which should be close
> # to 13750 * 50 = 687500:

> var (TN)

[1] 682469.4

All seems well. Note that the sample variance is often some distance from the
true variance, even when the sample size is 10,000.

General result for randomly stopped sums:

Suppose X1, X, ... each have the same mean 1 and variance o2, and X1, X, . . .,
and N are mutually independent. Let Ty = X; + ...+ Xy be the randomly
stopped sum. By following similar working to that above:

E(Ty) =E {XN:XZ} = pE(N)

7

Var(Ty) = Var { XZ} = 0?E(N) + p? Var(N).
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3.5 First-Step Analysis for calculating expected reaching times

Remember from Section 2.6 that we use First-Step Analysis for finding the
probability of eventually reaching a particular state in a stochastic process.
First-step analysis for probabilities uses conditional probability and the Partition
Theorem (Law of Total Probability).

In the same way, we can use first-step analysis for finding the expected reaching
time for a state.

This is the expected number of steps that will be needed to reach a particular
state from a specified start-point, or the expected length of time it will take to
get there if we have a continuous time process.

Just as first-step analysis for probabilities uses conditional probability and the
law of total probability (Partition Theorem), first-step analysis for expectations
uses conditional expectation and the law of total expectation.

First-step analysis for probabilities:

The first-step analysis procedure for probabilities can be summarized as follows:

P(eventual gogl= Z P(eventual godloption)P(option) .
first-step
options

This is because the first-step options form a partition of the sample space.

First-step analysis for expected reaching times:

The expression for expected reaching times is very similar:

E(reaching timg = Z E(reaching timéoptionP(option) .
first-step
options
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This follows immediately from the law of total expectation:

E(X) = By {E(X|Y)} = DBV =yP(Y =)

Let X be the reaching time, and let Y be the label for possible options:
Le.Y =1,2,3,...foroptions 1, 2, 3, ...

We then obtain:
E(X) = Y EX|Y =y)P(Y =y)
y

Ie. E(reaching timg = Z [E(reaching timéoptionP(option) .
first-step
options

Example 1: Mouse in a Maze

A mouse is trapped in a room with three exits at
the centre of a maze.

e Exit 1 leads outside the maze after 3 minutes.
e Exit 2 leads back to the room after 5 minutes.
e [xit 3 leads back to the room after 7 minutes.

Every time the mouse makes a choice, it is equally likely to choose any of the
three exits. What is the expected time taken for the mouse to leave the maze?

Exit 2
Let X = time taken for mouse to 5mins | 1/3
leave maze, starting from room R. _ ! U3 _
LetY = exit the mouse chooses -{__Room 3 mins Exit 1
first (1, 2, or 3). 7mins | 1/3

Exit 3
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E(X) = Ey (E(X | Y))

= Y E(X|Y =y)P(Y =y)

= EX|Y=1)x1i+EX|Y =2)x3s+EX|Y =3)x3.
But:
E(X|Y =1) = 3 minutes
E(X|Y =2) = 5+ E(X) (after 5 mins back in Room, tinig( X') to get out)
E(X|Y =3) = 7T+ E(X) (after 7 mins, back in Room)
So
E(X) = 3><§+(5+EX> ><§+(7+EX) x 1
= 15 x 5 +2(EX) x 3
E(X) = 15x 3

= E(X) = 15 minutes.

Notation for quick solutions of first-step analysis problems

As for probabilities, first-step analysis for expectations relies on a good notation.
The best way to tackle the problem above is as follows.

Define mp = E(time to leave mazéstart in Roon.
First-step analysis:
mpr = 5 X3+3x (54+mg)+3x(7+mp)
= 3mp = 3+5+7)+2mp

= mpg = 15 minutes (as before)
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Example 2: Counting the steps

The most common questions involving first-step analysis for expectations ask

for the expected number of steps before finishing. The number of steps

is usually equal to the number of arrows traversed from the current state to the
end.

The key point to remember is that when we take expectations, we are usually
counting something.

You must remember to add on whatever we are counting, to every step taken.

1/3
The mouse is put in a new magze with O
two rooms, pictured here. Starting from Room 1 1/3

Room 1, what is the expected number of
1/3 1/3

EXIT

steps the mouse takes before it reaches
the exit?

Room 2 1/3
1. Define notation: let 4\)1/3

my = E(number of steps to finishstart in Room }

mo = [E(number of steps to finishstart in Room 2
2. First-step analysis:
X 145 (1+my)+ 35 (14 mo) (a)

(I+mg) (D)

myp =

Wl Wl
Wl Wl

my = 3 x1+3(14+m)+

We could solve as simultaneous equations, as usual, businake inspection of
(a) and (b) shows immediately that = m,. Thus:

(a) = 3m; = 34+2my
= m; = 3 Steps

Further, ms; = m; = 3 steps also.
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Incrementing before partitioning

3.6

In many problems, all possible first-step
options incur the same initial penalty:.
The last example is such a case, because
every possible step adds 1 to the

total number of steps taken.

In a case where all steps incur the same penalty,
there are two ways of proceeding:
1. Add the penalty onto each option separately: e.g.
my =5 X 1+35(1+m)+5(1+m).
2. (Usually quicker) Add the penalty once only, at the begignin

mi=1 + 1x0+43m +3mo.

In each case, we will get the same answer (check). This is because the option
probabilities sum to 1, so in Method 1 we are addirig+3+3)x1=1x1=1,
just as we are in Method 2.

Probability as a conditional expectation

Recall from Section 3.1 that for any event A, we can write P(A) as an expecta-
tion as follows.

1 if event A occurs,

Define the indicator random variable: 4 = )
0 otherwise.

Then E(I,) = P(I4 = 1) = P(A).

We can refine this expression further, using the idea of conditional expectation.
Let Y be any random variable. Then

P(A) = E(Ly) = By (E(L4]Y)).
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But
1
E(I4]Y) = Y rP(Ia=r]Y)
r=0
= OXPI4=0]Y)+1xPIy4=1]Y)
= P(I,4=1]Y)
— P(A|Y).
Thus

P(A) = By (E(IA | Y)) — Ey <P(A | Y)).

This means that for any random variable X (discrete or continuous), and for
any set of values S (a discrete set or a continuous set), we can write:

e for any discrete random variable Y,

P(X €S8)=> PXeS|Y=yPY =y).

e for any continuous random variable Y,

P(X € 5) = / P(X € S|Y =) fr(y) dy.

Y

Example of probability as a conditional expectation: winning a lottery

Suppose that a million people have bought tickets for the

weekly lottery draw. Each person has a probability of one-
in-a-million of selecting the winning numbers. If more than
one person selects the winning numbers, the winner will be

chosen at random from all those with matching numbers.
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You watch the lottery draw on TV and your numbers match the winners!! You

had a one-in-a-million chance, and there were a million players, so it must be
YOU, right?

Not so fast. Before you rush to claim your prize, let’s calculate the probability
that you really will win. You definitely win if you are the only person with
matching numbers, but you can also win if there there are multiple matching
tickets and yours is the one selected at random from the matches.

Define Y to be the number of OTHER matching tickets out of the OTHER 1
million tickets sold. (If you are lucky, Y = 0 so you have definitely won.)

If there are 1 million tickets and each ticket has a one-in-a-million chance of
having the winning numbers, then

Y ~ Poissonl) approximately.

The relationship Y ~ Poisson(1) arises because of the Poisson approximation
to the Binomial distribution.

(a) What is the probability function of Y, fy(y)?

1Y 1
friy) =P(Y =y)= —e ' = for y=0,1,2,....
y! e x !

(b) What is the probability that yours is the only matching ticket?

P(only one matching ticket=P(Y = 0) = L 0.368.
€

(¢) The prize is chosen at random from all those who have matching tickets.
What is the probability that you win if there are Y = y OTHER matching
tickets?

LetW be the event that | win.

1
PW|Y =y) = —.
WY =y) =
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(d) Overall, what is the probability that you win, given that you have a match-

ing ticket?

Disappointing?

(W)

Ey{]P’(W|Y:y)}
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3.7 Special process: a model for gene spread

Suppose that a particular gene comes in two variants (alleles): A and B. We
might be interested in the case where one of the alleles, say A, is harmful —
for example it causes a disease. All animals in the population must have either
allele A or allele B. We want to know how long it will take before all animals
have the same allele, and whether this allele will be the harmful allele A or
the safe allele B. This simple model assumes asexual reproduction. It is very
similar to the famous Wright-Fisher model, which is a fundamental model of
population genetics.

Assumptions:

1. The population stays at constant size NV for all generations.

2. At the end of each generation, the N animals create N offspring and then
they immediately die.

3. If there are x parents with allele A, and N — = with allele B, then each
offspring gets allele A with probability /N and allele B with 1 — z/N.

4. All offspring are independent.

Stochastic process:

The state of the process at time ¢ is X; = the number of animals with allele A
at generation.

Each X; could be 0, 1, 2, ..., N.The state space is {0,1,2,..., N}.

Distribution of [ X1 | X;]

Suppose that X; = x, so x of the animals at generation ¢ have allele A.

Each of the N offspring will get A with probability + and B with probability
11—,
N

Thus the number of offspring at time t+1 with allele A is: X;,; ~ Binomial (N : %) :

We write this as follows:

[ X | Xe=2] ~ BinomiaI(N, %) :
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If
[ X¢11| Xt =2] ~ Binomial (N, %) :

then

P(X=y| X, =)= <N> (£)7(1- %)N*y (Binomial formula)

Example with N = 3

This process becomes complicated to do by hand when N is large. We can use
small N to see how to use first-step analysis to answer our questions.

Transition diagram:

Exercise: find the missing probabilities a, b, ¢, and d when N = 3. Express
them all as fractions over the same denominator.

d

Probability the harmful allele A dies out

Suppose the process starts at generation 0. One of the three animals has the
harmful allele A. Define a suitable notation, and find the probability that the
harmful allele A eventually dies out.

Exercise: answest 2/3.
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Expected number of generations to fixation

Suppose again that the process starts at generation 0, and one of the three
animals has the harmful allele A. Eventually all animals will have the same
allele, whether it is allele A or B. When this happens, the population is said to
have reached fization: it is fixed for a single allele and no further changes are
possible.

Define a suitable notation, and find the expected number of generations to
fixation.

Exercise: answet 3 generations on average.

Things get more interesting for large N. When N = 100, and x = 10 animals
have the harmful allele at generation 0, there is a 90% chance that the harmful
allele will die out and a 10% chance that the harmful allele will take over the
whole population. The expected number of generations taken to reach fixation
is 63.5. If the process starts with just x = 1 animal with the harmful allele,
there is a 99% chance the harmful allele will die out, but the expected number of
generations to fixation is 10.5. Despite the allele being rare, the average number
of generations for it to either die out or saturate the population is quite large.

Note: The model above is also an example of a process called the Voter Process.
The N individuals correspond to N people who each support one of two political
candidates, A or B. Every day they make a new decision about whom to support,
based on the amount of current support for each candidate. Fixation in the
genetic model corresponds to concensus in the Voter Process.
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Chapter 4: (Generating Functions

4.1

This chapter looks at Probability Generating Functions (PGFs) for discrete
random variables. PGFs are useful tools for dealing with sums and limits of
random variables. For some stochastic processes, they also have a special role
in telling us whether a process will ever reach a particular state.

By the end of this chapter, you should be able to:
e find the sum of Geometric, Binomial, and Exponential series;
e know the definition of the PGF, and use it to calculate the mean, variance,
and probabilities;
e calculate the PGF for Geometric, Binomial, and Poisson distributions;
e calculate the PGF for a randomly stopped sum;
e calculate the PGF for first reaching times in the random walk;
e use the PGF to determine whether a process will ever reach a given state.

Common sums

1. Geometric Series

0
l+r+r+ri+... = Zr“” = 1 when|r| < 1.

This formula proves that " ° (P(X = z) = 1 when X ~ Geometric(p):

P(X=x)=p(l-p)" = > PX=z) =) p(l-p)

= py (1—p)

p

= ——  (becausgl — p| < 1)

1—(1-p)

= 1L
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2. Binomial Theorem For anyp, q € R, and integen,

p+q)" = i:CDP%”?

=0

|
Note that[ ") = — " ("C, button on calculator.)
x (n—x)!x!

The Binomial Theorem proves that Y _ P(X = z) = 1 when X ~ Binomial(n, p):
P(X = 1) = (”>pw(1 —p)" " forz =0,1,...,n, SO
T

imm _ i(Z)pQE(l—p)"—x

=0
= @Hﬂl—m>
— 1”
= 1.
3. Exponential Power Series
For any\ € R i X
’ < ! -

This proves that >~ /P(X = z) = 1 when X ~ Poisson(\):

T

A
P(X =x)="—e*forz=0,1,2,..., S0

x!
00 00 AT B B 00 AT
;P(X:x):z:%ae)‘ = e)‘;a
_ o
= 1.

)\ n
Note: Another useful identity is: et = lim (1 + —) for \ € R.
n

n—oo
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4.2 Probability Generating Functions

The probability generating function (PGF) is a useful tool for dealing
with discrete random variables taking values 0, 1,2, . ... Its particular strength
is that it gives us an easy way of characterizing the distribution of X +Y when
X and Y are independent. In general it is difficult to find the distribution of
a sum using the traditional probability function. The PGF transforms a sum
into a product and enables it to be handled much more easily.

Sums of random variables are particularly important in the study of stochastic
processes, because many stochastic processes are formed from the sum of a
sequence of repeating steps: for example, the Gambler’s Ruin from Section 2.7.

The name probability generating function also gives us another clue to the role
of the PGF. The PGF can be used to generate all the probabilities of the
distribution. This is generally tedious and is not often an efficient way of
calculating probabilities. However, the fact that it can be done demonstrates
that the PGF tells us everything there is to know about the digtiob.

Definition: Let X be a discrete random variable taking values in the non-negative
integers {0, 1,2,...}. The probability generating function (PGF) of X is
Gx(s) = E(sY), for all s € R for which the sum converges.

Calculating the probability generating function

(0. ¢]

Gx(s) =E(s%) = stP(X = ).

=0

Properties of the PGF':

1. Gx(0) = P(X = 0):

Gx(0) = O°XxPX=0)4+0'xP(X=1)+0*xP(X =2)+...
Gx(0) = P(X =0).
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2. Gx(1) =1: Gx(1) :ille’(X:a:) :io:IP’(X:ac) ~ 1.

Example 1: Binomial Distribution

n

Let X ~ Binomial(n,p), so P(X = x) = ( )pxq"_x forx=0,1,...,n.

X

Gx(s) = zn:S”“’(Z)pxq"x
= zn: (Z) (ps)*q"™"

=0

= (ps+q)" by the Binomial Theorem: true for &l

ThusGx(s) = (ps+q)" for all s € R.

X ~ Bin(n=4, p=0.2)
Check Gx(0):

Gx(0) = (px0+4q)" g
= P(X =0) e =
-20 -10 0 10
Check Gx(1): s

Gx(1) = (px1+44q)"
()"

= 1L
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Example 2: Poisson Distribution

)\ZE
Let X ~ Poisson(\), so P(X =z) = —'e_)‘ forx =0,1,2,...
!

=\ = (As)”

x!

Q
=
©

[

[

OJH

2
[
S
[
aQ
S
(]

— e ™) forall scR.

Thus Gx(s) =1 forall s € R.

X ~ Poisson(4)

G(s)
10 20 30 40 50

0

-1.0 -0.5 0.0 0.5 1.0 15 2.0

Example 3: Geometric Distribution

Let X ~ Geometric(p), so P(X = z) = p(1 — p)* = pg* for v = 0,1,2,...,
where g =1 — p.

o0
~ Geom(0.8)
GX(5> = Z Squm G(s) * to nfinity 4
=0 ? i :
. : s |
= p> (gs)" : ; ‘ :
=0 -5 0 5 R
= 7 L for all s such thatgs| < 1.

1
Thus Gx(s)=—L— for |s| <.
1 —gs q
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4.3 Using the probability generating function to calculate probabilities

The probability generating function gets its name because the power series can
be expanded and differentiated to reveal the individual probabilities. Thus,
given only the PGF x (s) = E(sY), we can recover all probabilitié X = x).

For shorthand, write p, = P(X = z). Then

Gx(s) =E(s) = Y pus” =po+pis+pas” +pss® + pas’ + ..
=0

Thus py =P(X =0) = Gx(0).

First derivative: G’y (5) = p1+ 2pas + 3pss® + dpys® + ...

Thus py =P(X =1) = G'(0).

Second derivative: G%(s) = 2pa+ (3 x2)pss + (4 X 3)pus® + ...

1
Thus py =P(X =2) = EG/)/((O)

Third derivative:  G%(s) = (3x2x 1)ps+ (4 X 3 X 2)ps+ ...

Thus p3 = P(X =3) = =G%(0).

In general:
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Example: Let X be a discrete random variable with PGF Gx(s) = 2(2 + 35%).
Find the distribution of X.

2 3

Gx(s) = 5S+5S32 Gx(0)=P(X =0)=0.
/ 9 2 / 2
=—--4 - =PX=1)=-.
()= 2 + 35 () =F(X =1) =
18 1
G'%( )233' §G’)’((O):IP’(X:2):O
" 18 1 " 3
=, - P(X =3) ="
G(s) =~ SGR0) =B(X =3) =3
r 1 r
GU(s)=0vr>4 HG%)(s)—P(X:r):0Vr>4
Thus _ -
[ 1 with probability2/5,
~ | 3 with probability3/5.
Uniqueness of the PGF
1
The formula p, = P(X =n) = (—'> Gg?)(()) shows that the whole sequence of
n!

probabilities pg, p1, po, . . . is determined by the values of the PGF and its deriv-
atives at s = 0. It follows that the PGF specifies a unique set of probabilities.

Fact: If two power series agree on any interval containing 0, however small, then
all terms of the two series are equal.

Formally: let A(s) and B(s) be PGFs with A(s) =7 a,s™, B(s) = > bys"
If there exists some R’ > 0 such that A(s) = B(s) for all —-R' < s < R/, then
a, = b, for all n.

Practical use: If we can show that two random variables have the same PGF in

some interval containing 0, then we have shown that the two random variables
have the same distribution.

Another way of expressing this is to say that the PGF ofX tells us everything
there is to know about the distribution &f.
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4.4 Expectation and moments from the PGF

As well as calculating probabilities, we can also use the PGF to calculate the
moments of the distribution of X. The moments of a distribution are the mean,
variance, etc.

Theorem 4.4: Let X be a discrete random variable with PGF Gx(s). Then:

1. E(X) = G'y(1).

dk GX(S)

2. E{X(X—1)(X—2)...(X—k+1)}:Gg’?u): - .

(This is thekth factorial momenof X'.)

Proof: (Sketch: see Section 4.8 for more details)

X ~ Poisson(4)

oo

Gx(s) = Y s"pa,

=0
(0]

so Gy(s) = stx_lpz
=0

g <
= (1) = > ap, =E(X) ‘“
=0 °
0.0 05 1.0 15
d* Gx(s) -
k X .
2. Gg()(‘g):T = ;x(a:—l)(x—2)...(a:—k+1)s kpx

SO Gg];)(l) = ix(w—l)(m—@...(az—k—l—l)px
=k

- E{X(X—1)(X—2)...(X—k+1)}. 0
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Example: Let X ~ Poisson()\). The PGF of X is Gx(s) = e’*~Y. Find E(X)
and Var(X). X ~ Poisson(4)

Solution:

Gl(s) = AU

G(s)

= E(X) = G(1) =\

For the variance, consider
0.0 0.5 1.0 1.5

E{wx—n}::eynzx%w4mlzx?
So
VanX) = E(X?) - (EX)?
- E{mxx—n}+EX—4EXf

= NM4+A-N
= A\

4.5 Probability generating function for a sum of independent r.v.s

One of the PGF’s greatest strengths is that it turns a sum into a product:
E (S(X1+X2>) _F (lesxz) .

This makes the PGF useful for finding the probabilities and moments of & sum
of independent random variables.

Theorem 4.5: Suppose that Xi,..., X, are independent random variables, and
let Y = X1+ ...+ X,,. Then

Gy(s) = H Gx,(s).
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Gy(8> _ E(S(X1+...+Xn))

= E(s*)E(s%2)...E(s")

(becauseX, . . ., X, are independent)

= [[Gx.(s). asrequired. O
=1

Example: Suppose that X and Y are independent with X ~ Poisson(\) and

4.6

Y ~ Poisson(u). Find the distribution of X + Y.
Solution: Gxiv(s) = Gx(s)-Gy(s)
— A= u(s=1)

_ 1)

But this is the PGF of the Poisson+ 1) distribution. So, by the uniqueness of
PGFs,X +Y ~ Poissog\ + ).

Randomly stopped sum

RATIONAL BANK OF REMUERA

Remember the randomly stopped sum model from
Section 3.4. A random number N of events occur,

and each event ¢ has associated with it a cost or
reward X;. The question is to find the distribution

of the total cost or reward: Ty = X7 + Xo + ... + Xx.
Ty is called a randomly stopped sum because it has a random number of terms.

Example: Cash machine model. N customers arrive during the day. Customer ¢

withdraws amount X;. The total amount withdrawn during the day is Ty =
X1 +...+ Xy
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that E(Ty) = pE(N) and Var(Ty) = 02 E(N) + p? Var(N), where p = E(X;)
and 0% = Var(X;).

In this chapter we will now use probability generating functions to investigate

the whole distribution off’y.

Theorem 4.6: Let X;, X, ..

independent of the X;’s, with PGF Gy, andlet Ty = X1+4+... + Xy = Zf\il X;.
Then the PGF of Ty is:

Proof:

GTN(S)

Gy (s) = Gy (GX(S)).

E(s¥)...E(s*Y) } (X,’s are indept of each other)

=
2
0
>
S
=
——

{
{
Ex{E(s™...s™) } (Xis are indept ofV)
{
{
(

G GX(S)) (by definition ofGy). [l

. be a sequence of independent and identically dis-
tributed random variables with common PGF Gx. Let N be a random variable,
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Example: Let Xi,X,,...and N be as above. Find the mean of Tl.
E(Tx) = Gr, (1) = —-Gy(Gx(s))
N) = Tn N dS N x\s s=1
— Gy(Gx(s)) - Ci(s)|
= Gy(1)-G%(1) Note:Gx (1) =1 for any r.v.X
= E(N)- E(Xy), — same answer as in Chapter 3.

Example: Heron goes fishing

My aunt was asked by her neighbours to feed the prize
goldfish in their garden pond while they were on holiday.
Although my aunt dutifully went and fed them every day,
she never saw a single fish for the whole three weeks. It
turned out that all the fish had been eaten by a heron
when she wasn’t looking!

Let N be the number of times the heron visits the pond
during the neighbours” absence. Suppose that N ~ Geometric(1 — 6),

so P(N =n) = (1—-6)§", forn=20,1,2,.... When the heron visits the pond
it has probability p of catching a prize goldfish, independently of what happens
on any other visit. (This assumes that there are infinitely many goldfish to be
caught!) Find the distribution of

T = total number of goldfish caught.

Solution:

let X, — { 1 if heron catches a fish on visit

0 otherwise.
ThenT = X, + Xs + ...+ Xx (randomly stopped sum), so

GT(S) = GN(G)((S))
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Also,
Gn(r) = ZT”IP’(N =n) = Zr”(l — 0)0"
n=0 n=0
= (1-0)) (6r)"
n=0

_ 11—_907~' (r<1/0).

So
1-6 :
Gr(s) = = 0Gx(s) (puttingr = Gx(s)),
giving:
Gr(s) — 1—4

1—6(1—p+ps)

1—40
1—60+460p—0Ops

1—m

[could this be Geometric@r(s) = . for somern?]

— TS

1—-6
(1 -0+ 0p) —Ops

1-46
(Com)
(1—-6+0p) —Ops
( 1—-60+0p )

86
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1—60+60p—0p
1—0+6p
Op
1— | —2£
(1—9—!—9}))8
(%
B 1—6+06p

()
1—60+06p

This is the PGF of the Geometr(d — 10;—‘10) distribution, so by unique-
- P
ness of PGFs, we have:

) 1—46
T ~ — .
Geometru(1 T 9p>

Why did we need to use the PGF?

We could have solved the heron problem without using the PGF, but it is much
more difficult. PGF's are very useful for dealing with sums of random variables,
which are difficult to tackle using the standard probability function.

Here are the first few steps of solving the heron problem without the PGF.
Recall the problem:

e Let N ~ Geometric(l —6), so P(N =n) = (1—0)0";

e Let Xy, Xy, ... beindependent of each other and of N, with X; ~ Binomial(1, p)
(remember X; = 1 with probability p, and 0 otherwise);

e Let T'= X1+ ...+ Xy be the randomly stopped sum;
e Find the distribution of 7T'.
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Without using the PGF, we would tackle this by looking for an expression for
P(T = t) for any t. Once we have obtained that expression, we might be able
to see that T has a distribution we recognise (e.g. Geometric), or otherwise we
would just state that 1" is defined by the probability function we have obtained.

To find P(T" = t), we have to partition over dfferent values oN :
P(T=t)=Y P(T=t|N=n)P(N=n). (%)
n=0

Here, we are lucky that we can write down the distribution of T'| N = n:

e if N = n is fixed, then T" = X; 4+ ... 4+ X,, is a sum of n independent
Binomial(1, p) random variables, so (T'| N = n) ~ Binomialn, p).

For most distributions of X, it would be dfficult or impossible to write down the
distribution of X + ...+ X,,:

we would have to use an expression like

t—xy t—(x14...+Tp—2)

PXi 4.+ Xy=tIN=n)=Y Y ... ¥ {P(Xlle)x

$1:0 :L'QZO zn,1:0

P(Xy = a9) X .. X P(Xp1 = 1) X P[Xp =t — (21 + ... + xnl)]} .

Back to the heron problem: we are lucky in this case that we know the distri-
bution of (T'| N = n) is Binomial(N = n, p), so

P(T=t|N=n)= (?)pt(l—p)"t fort=0,1,...,n.

Continuing from (x):

P(T=t) = iP(T:t\N:n)P(N:n)
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= ...7

As it happens, we can evaluate the sum in (x%) using the fact that Negative
Binomial probabilities sum to 1. You can try this if you like, but it is quite
tricky. [Hint: use the Negative Binomial (¢t + 1,1 — 6(1 — p)) distribution.]

1—46
Overall, we obtain the same answer that T" ~ Geometric | ———— |, but
1—60+06p

hopefully you can see why the PGF is so useful.
Without the PGF, we have two majorficulties:

1. Writing downP(T =t|N =n);
2. Evaluating the sum overin (xx).

For a general problem, both of these steps might be too difficult to do without
a computer. The PGF has none of these difficulties, and even if G(s) does not
simplify readily, it still tells us everything there is to know about the distribution
of T.

4.7 Summary: Properties of the PGF

Definition: Gx(s) = E(s¥Y)
Used for: Discrete r.v.s with values 0, 1, 2, ...
Moments: E(X) = G (1) ]E{X(X 1) (X — ke 1)} =P

L
Probabilities: P(X =n) = EGQ(O)

Sums: Gxiy(s) = Gx(s)Gy(s) for independent X, Y
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4.8 Convergence of PGF's

We have been using PGFs throughout this chapter without paying much at-
tention to their mathematical properties. For example, are we sure that the
power series Gx(s) = > .~ s"P(X = x) converges? Can we differentiate and
integrate the infinite power series term by term as we did in Section 4.47 When
we said in Section 4.4 that E(X) = G’y (1), can we be sure that Gx (1) and its
derivative G'x (1) even exist?

This technical section introduces the radius of convergence of the PGF.
Although it isn’t obvious, it is always safe to assume convergence of G (s) at
least for |s| < 1. Also, there are results that assure us that E(X) = Gy (1) will
work for all non-defective random variables X.

Definition: The radius of convergence of a probability generating function is a
numberR > 0, such that the suntx(s) = > .-, s"P(X = xz) converges if
|s| < R and diverges- oo) if |s| > R.

(No general statement is made about what happens when |s| = R.)

Fact: For any PGF, the radius of convergence exists.
It is always > 1: every PGF converges for at least s € (—1,1).

The radius of convergence could be anything from R =1 to R = oo.

Note: This gives us the surprising result that the set of s for which the PGF Gx (s)
converges is symmetric about 0: the PGF converges for all s € (=R, R), and
for no s < —R or s > R.

This is surprising because the PGF itself is not usually symmetric about 0: i.e.
Gx(—s) # Gx(s) in general.

Example 1: Geometric distribution

Let X ~ Geometric(p = 0.8). What is the radius of convergence of Gx(s)?
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As in Section 4.2,

Gx(s) = 3 s7(0.8)(0.2)" = O.8§:(O.23)$

0.8
= —— forall h that0.2 1.
1= 03: or all s suc at0.2s| <

This is valid for alls with |0.2s| < 1, so it is valid for alls with |s| < 55 = 5.
(.e.—5 < s <5.)
The radius of convergence is= 5.

The figure shows the PGF of the Geometric(p = 0.8) distribution, with its
radius of convergence R = 5. Note that although the convergence set (—5,5) is
symmetric about 0, the function Gx(s) = p/(1 —¢s) =4/(5 — s) is not.

Geometric(0.8) probability generating function
G(s) to infinity f

2
|

T
-5 0 5 s

; .
Radius of Convergenee—/

In this region, p/(1-gs) remains finite and well-behaved,
but it is no longer equal to E(s ).

At the limits of convergence, strange things happen:

e At the positive end, as s T 5, both Gx(s) and p/(1 — ¢s) approach infinity.
So the PGF is (left)-continuous at +R:

limGx(s) = Gx(5) = oc.

sTH

However, the PGF does not converge at s = +R.
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e At the negative end, as s | —5, the function p/(1 — ¢gs) = 4/(5 — s) is

continuous and passes through 0.4 when s = —5. However, when s <
—5, this function no longer represents Gx(s) = 0.8 ,(0.2s)", because
10.2s] > 1.

Additionally, when s = —5, Gx(=5) = 0.8> .~ ,(—1)" does not exist.
Unlike the positive end, this means that G'x(s) is not (right)-continuous
at —R:

;im5 Gx(S) =04 7§ Gx(—5).

Like the positive end, this PGF does not converge at s = —R.

FExample 2: Binomial distribution

Let X ~ Binomial(n,p). What is the radius of convergence of Gx(s)?

As in Section 4.2,
. T n Tr N—I
Gx(s) = ;S <x>p q
n n .
= > (V)
=0

= (ps+q)" by the Binomial Theorem: true for &l

This is true for all- < s < oo, S0 the radius of convergencels= oc.

Abel’s Theorem for continuity of power series at s =1

Recall from above that if X ~ Geometric(0.8), then Gx(s) is not continuous
at the negative end of its convergence (—R):

lim Gx (s) # Gx(=5).

Abel’s theorem states that this sort of effect can never happen at s = 1 (or at
+R). In particular, Gx(s) is always left-continuous at s = 1:

ligl Gx(s) = Gx(1) always, even if Gx(1) = oc.
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Theorem 4.8: Abel’s Theorem.

Let G(s) = Zpisi for any pg, p1, p2, . .. with p; > 0 for all 7.
i=0

Then G(s) is left-continuous at s = 1:

imG(s) =Y p = G(1),
im G(s) ;p (1)

whether or not this sum is finite.

Note: Remember that the radius of convergence R > 1 for any PGF, so Abel’s
Theorem means that even in the worst-case scenario when R = 1, we can still
trust that the PGF will be continuous at s = 1. (By contrast, we can not be
sure that the PGF will be continuous at the the lower limit —R).

Abel’s Theorem means that for any PGF, we can write Gx (1) as shorthand for
limsﬂ Gx(S).

It also clarifies our proof that E(X) = G’y (1) from Section 4.4. If we assume
that term-by-term differentiation is allowed for G'x(s) (see below), then the
proof on page 81 gives:

.¢]

Gx(s) = Y s"pa,

=0

SO Gy (s) = Z rs" p, (term-by-term differentiation: see below).
r=1
Abel’s Theorem establishes that E(X) is equal to limg G'x(s):
E(X) - prx
r=1

= Gx(1)
— lim &’
im G (s),
because Abel’s Theorem applies to G (s) = > -, xs* !p,, establishing that
G'x(s) is left-continuous at s = 1. Without Abel’s Theorem, we could not be
sure that the limit of G’y (s) as s T 1 would give us the correct answer for E(.X).
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Absolute and uniform convergence for term-by-term differentiation

We have stated that the PGF converges for all |s| < R for some R. In fact,
the probability generating function converges absolutely if |s| < R. Absolute
convergence is stronger than convergence alone: it means that the sum of abso-
lute values, "7 |s"P(X = z)|, also converges. When two series both converge
absolutely, the product series also converges absolutely. This guarantees that

Gx(s) x Gy(s) is absolutely convergent for any two random variables X and Y.
This is useful because Gx(s) X Gy (s) = Gx.y(s) if X and Y are independent.

The PGF also converges uniformly on any set {s : |s| < R'} where R’ < R.
Intuitively, this means that the speed of convergence does not depend upon the
value of s. Thus a value ng can be found such that for all values of n > ny,
the finite sum > _ s"P(X = x) is simultaneously close to the converged value
Gx(s), for all s with |s|] < R'. In mathematical notation: Ve > 0, Iny €
Z such that Vs with |s| < R/, and Vn > ny,

n

ZSQCIP’(X =z)—Gx(s)| <

=0

Uniform convergence allows us to differentiate or integrate the PGF term by
term.

Fact: Let Gx(s) =FE(s*) =07, s"P(X =), and let s < R.

1. G'X(s):% (Z s"IP ) z%;l— = x)):Za:sx_lIP’(X = ).

(term by term differentiation).

2 [ G- [ (z B — @) =3 ([ wpec =)

=0

00 1
:ZS P(X =2x) for —R<a<b<R.

8
_I_
—_

(term by term integration).
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4.9 Special Process: the Random Walk

We briefly saw the Drunkard’s Walk in Chapter 1: a drunk person staggers
to left and right as he walks. This process is called the Random Walk in
stochastic processes. Probability generating functions are particularly useful
for processes such as the random walk, because the process is defined as the
sum of a single repeating step. The repeating step is a move of one unit, left
or right at random. The sum of the first ¢ steps gives the position at time t¢.

The transition diagram below shows the symmetric random walk (all transitions
have probabilityp = 1/2.)

1/2 1/2 1/2 1/2 1/2 1/2
-0 {1 |—»{ 2 |—»] 3]--- >
A SV WA WA W W W S

1/2 1/2 1/2 1/2 1/2 1/2 1/2

Question:

What is the key difference between the random walk and the gambler’s ruin?

The random walk has an INFINITE state space: it never stofe gambler’s
ruin stops at both ends.

This fact has two important consequences:

e The random walk is hard to tackle using first-step analysis, because we
would have to solve an #nfinite number of simultaneous equations. In this
respect it might seem to be more difficult than the gambler’s ruin.

e Because the random walk never stops, all states are equal.

In the gambler’s ruin, states are not equal: the states closest to 0 are
more likely to end in ruin than the states closest to winning. By contrast,
the random walk has no end-points, so (for example) the distribution of
the time to reach state 5 starting from state 0 is exactly the same as the
distribution of the time to reach state 1005 starting from state 1000. We
can exploit this fact to solve some problems for the random walk that
would be much more difficult to solve for the gambler’s ruin.
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PGFs for finding the distribution of reaching times

For random walks, we are particularly interested in reaching times:
e How long will it take us to reach state j, starting from state 27

e [s there a chance that we will never reach state j, starting from state 7

In Chapter 3 we saw how to find expected reaching times: the expected
number of steps taken to reach a particular state. We used the law of total
expectation and first-step analysis (Section 3.5).

However, the expected or average reaching time doesn’t tell the whole story.
Think back to the model for gene spread in Section 3.7. If there is just one
animal out of 100 with the harmful allele, the expected number of generations to
fixation is quite large at 10.5: even though the allele will usually die out after one
or two generations. The high average is caused by a small chance that the allele
will take hold and grow, requiring a very large number of generations before it
either dies out or saturates the population. In most stochastic processes, the
average is of limited use by itself, without having some idea about the variance
and skew of the distribution.

With our tool of PGFs, we can characterise the whole distribution of the time
T taken to reach a particular state, by finding its PGF. This will give us the
mean, variance, and skew by differentiation. In principle the PGF could even
give us the full set of probabilities, P(T" = t) for all possible t = 0,1,2,.. .,
though in practice it may be computationally infeasible to find more than the
first few probabilities by repeated differentiation.

However, there is a new and very useful piece of information that the PGF can
tell us quickly and easily:

what is the probability that we NEVER reach statatarting from state?

For example, imagine that the random walk represents the share value for an
investment. The current share price is ¢ dollars, and we might decide to sell
when it reaches 7 dollars. Knowing how long this might take, and whether there
is a chance we will never succeed, is fundamental to managing our investment.
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To tackle this problem, we define the random variable T" to be the time taken
(number of steps) to reach state j, starting from state i. We find the PGF of
T, and then use the PGF to discover P(T = o0). If P(T = 00) > 0, there is a
positive chance that we will NEVER reach state j, starting from state 1.

We will see how to determine the probability of never reaching our goal in
Section 4.11. First we will see how to calculate the PGF of a reaching time T’
in the random walk.

Finding the PGF of a reaching time in the random walk

1/2 1/2 1/2 1/2 1/2 1/2
-l {1 {0} 1 |—{ 2 | —>] 3]|--- >
‘\__,/’ \_/ \_/ \_/\_/ ‘\_/‘~__,’/
1/2 1/2 1/2 1/2 1/2 1/2 1/2

Define T;; to be the number of steps taken to reach statstarting at state
T;; is called the first reaching time from stateto statej.

We will focus on Ty; = number of steps to get from stateo statel.

Problem: Let H(s) =E (s') be the PGF of Tjy. Find H(s).

Arrived!

X
ﬁ%&%\ﬁ%& X X
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Solution:

LetY, be the step taken at time up or down. For the symmetric random walk,
1 with probability0.5,

o= { —1 with probability0.5,
andyYy,Y,, ... are independent.

RecallT;; = number of steps to get from statéo statej for anyi, j,

andH (s) = E (s') is the PGF required.
Use first-step analysis, partitioning over the first step
H(s) = E(s'™)
= E(s"™|Vi=1)PY;=1)+E(s" |V, =-1)P(Y; = —1)
1 T T
= S{EET M=)+ BT vi=-1) b .
2
Now if Y, = 1, thenTy, = 1 definitely, SOE (s" |Y; = 1) = s' = s.

If Y, =—1,thenTy; =1+ T 4;:

— one step from stateto state—1,

— thenT_, ; steps from state-1 to statel.

ButT ., =T_10+ 1o, because the process must pass through 0 to getfiom
to 1.

Now T_,, and Ty, are independent (Markov property). Also, they have the
same distribution because the process is translationiamtafi.e. all states are
the same):

1/2 1/2 1/2 1/2 1/2 1/2

it -1 0 1 2 3|---»
st aslluslastags ki

1/2 1/2 1/2 1/2 1/2 1/2 1/2
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Thus
E(s™ Y, =-1) = E(s"7")
_ E(81+T_1’0+TO’1)
= sE (s")E (s") by independence
— s(H(s))* because identically distributed.
Thus

H(s) = % [s+s(H(s)?)  bya

This is a quadratic i (s):

1 1
—s(H(s))? = H(s)+=5s = 0
2 2
144/l —43s5s 14/
= H(s) = = .

S S

Which root? We know that (T, = 0) = 0, because it must take at least one step
. .\ 2
to go from O to 1. With the positive rootim, ,, H(0) = lim,_,g <—> = 00, SO
S
we take the negative root instead.

1 —+1— g2

Thus H(s) = .

Check this hasm,_,, H(s) = 0 by L’Hospital’s Rule:

)
i (5) = i (55)

~ lim %(1 — s2) 712 x 25
s—0 1
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Notation for quick solutions of first-step analysis for finding PGF's

As with first-step analysis for finding hitting probabilities and expected reaching
times, setting up a good notation is extremely important. Here is a good
notation for finding H(s) = E (s™).

LetT = Ty. SeekH (s) = E(sT).
Now

- { 1 with probability1/2,
1+ T"+T" with probability1/2,
whereT’ ~T" ~ T andT’, T" are independent.
Taking expectations:
E (s') w. p.1/2
E (s"THT") w. p.1/2

H(s) =E(s") = {

H(s) S w. p.1/2
j - / " .
’ sE(s")E(s") w.p.1/2  (byindependence af and1")

p B s w. p.1/2
= YT Vsnnt) wpp (becausa’ ~ 17 ~ )

= H(s) = 3s+3sH(s)%
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Thus:
sH(s)> —2H(s) +s = 0.

Solve the quadratic and select the correct root as befoggtto

1—v1— g2
H(s) = * forls| < 1.
S

Defective random variables

A random variable is said to be defective if it can take the valuec.

In stochastic processes, a reaching timd;; is defective if there is a chance that
we NEVER reach statg starting from state.

The probability that we never reach state j, starting from state i, is the same

as the probability that the time taken is infinite: 7}; = oo:

P(T;; = oo0) = P(we NEVER reach statg, starting from state).

In other cases, we will alwaysreach staté eventually, starting from state

In that case, T;; can_nottake the valuec:

P(T;; = o00) =0 if we are CERTAIN to reach statg starting from state.

Definition: A random variable T is defective, or improper, if it can take the value

oo. That s,

T is defective if P(T = oo) > 0.
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Thinking of > ,° \P(T'=1t) as 1 — P(T = oco)

Although it seems strange, when we write Y .° /P(T = t), we are noincluding
the valuel = oo.

The sum ) 7, continues without ever stopping: at no point can we say we have
‘finished’ all the finite values of ¢ so we will now add on ¢t = oco. We simply
never get ta = co when we také_,” .

For a defective random variable T', this means that

iP(T:t)<1,

t=0

because we are missing the positive value of P(T" = 00).

All probabilities of T" must still sum to 1, so we have
1=> P(T=t)+P(T = o0),
t=0
in other words

iP(T:t) —1-P(T = ).
=0

PGPFs for defective random variables

When T is defective, the PGF of T is defined as the power series

t)s' for |s| < 1.

=
©

I
(¢
~

S

I

The term for P(T" = 00)s™ is missed out. The PGF is defined as the generating
function of the probabilities for finite values only.
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Because H(s) is a power series satisfying the conditions of Abel’s Theorem, we
know that:

e H(s) is left-continuous at s = 1, i.e. limg H(s) = H(1).
This is different from the behaviour of E(sT), if T is defective:

e E(sT) = H(s) for |s| < 1 because the missing term is zero: i.e. because
s> = 0 when |s| < 1.

e E(s7) is NOT left-continuous at s = 1. There is a sudden leap (disconti-
nuity) at s = 1 because s =0 as s T 1, but s =1 when s = 1.

Thus H(s) does NOT represent E(s) at s = 1. It is as if H(s) is a ‘train’ that
E(sT) rides on between —1 < s < 1. At s = 1, the train keeps going (i.e. H(s)
is continuous) but E(s”) jumps off the train.

We test whether 7' is defective by testing whether or not E(s”) ‘jumps off the
train” — that is, we test whether or not H(s) is equal to E(s?) when s = 1.

We know what E(s7) is when s = 1:

e E(sT) is always 1 when s = 1, whether T is defective or not:

E(17) =1 for ANY random variable 7.
But the function H(s) =, s'P(T = t) may or may not be 1 when s = 1:

o If T is defective, H(s) is missing a term and H(1) < 1.

e If 7" is not defective, H(s) is not missing anything so H(1) = 1.

Test for defectiveness:

Let H(s) =2, s'P(T =t) be the power series representing the PGF of T
for |s| < 1. Then T is defective if and only if H(1) < 1.
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Using defectiveness to find the probability we never get there

The simple test for defectiveness tells us whether there is a positive probability
that we NEVER reach our goal. Here are the steps.

1. We want to know the probability that we will NEVER reach state j, start-
ing from state 7.

2. Define T' to be the random variable giving the number of steps taken to
get from state ¢ to state j.

3. The event that we never reach state j, starting from state i, is the same
as the event that T" = oco. (If we wait an infinite length of time, we never
get there.) So

P(never reach statg| start at state) = P(T = o).

4. Find H(s) = > .2, s'"P(T = t), using a calculation like the one we did in
Section 4.9. H(s) is the PGF of T for |s| < 1. We only need to find it for
|s|] < 1. The calculation in Section 4.9 only works for |s| < 1 because the
expectations are infinite or undefined when |s| > 1.

5. The random variable T" is defective if and only if H(1) < 1.
6. If H(1) < 1, then the probability that T" takes the value oo is the missing
piece: P(T'=00) =1— H(1).

Overall:

P( never reach statg| start at state) = P(T' = o) = 1 — H(1).

Expectation and variance of a defective random variable

If T is defective, there is a positive chance that T = oo. This means that
E(T) = oo, VanT) = oo, andE(T*) = oo for any powera.
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E(T) and Var(7T) can not be found using the PGF when T is defective: you
will get the wrong answer.

When you are asked to find E(T") in a context where 7" might be defective:

e Iirst check whether T is defective: ISH(1) <1 or=17?
o If T is defective, then E(T") = oc.
e If 7" is not defective (H(1) = 1), then E(T") = H'(1) as usual.

4.11 Random Walk: the probability we never reach our goal

In the random walk in Section 4.9, we defined the first reaching time 7T{; as the
number of steps taken to get from state 0 to state 1.

In Section 4.9 we found the PGF of Tj; to be:

_ o2
PGF ofTy — H(s) = ~— Y17 for|s| < 1.

S

Questions:
a) What is the probability that we never reach state 1, starting from state 07

b) What is expected number of steps to reach state 1, starting from state 07

Solutions:
a) We need to know wheth@y;, is defective.

Toi Is defective if and only it (1) < 1.

Now H (1) = :=Y¥=L = 1. SoTy, is notdefective.

Thus
P(never reach state| Istart from state 0= 0.

We will DEFINITELY reach state 1 eventually, even if it takesery long time.
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b) Becausdy, is not defective, we can fine(1,) by differentiating the PGF:
E(Ty) = H'(1).

1_\/1_82 —1

H(s) = X = 5 — (3_2 — 1)1/2
So H'(s) = —s?*— % (s — 1)_1/2 (—257%)
Thus
: / _ 1 1
E(Ty) =limH'(s) =lim | —— + ——— | = .

2
sT1 sT1 S 83 /S% 1

So the expected number of steps to reach state 1 startingstadmO is infinite:
E(Tgl) = OCQ.

This result is striking. Even though we will definitely reach state 1, the
expected time to do so is infinite! In general, we can prove the following results
for random walks, starting from state 0:

p
Property Reach state 17 P(Ty; = 00) E(Ty) E--»

p>q Guaranteed 0 finite A S
q
p=g=13 Guaranteed 0 00
p<q Not guaranteed >0 00

Note: (Non-examinable) If T is defective in the random walk, E(s?) is not

continuous at s = 1. In Section 4.9 we had to solve a quadratic equation to find
H(s) = E(sT). The negative root solution for H(s) generally represents E(s”)
for s < 1. At s = 1, the solution for E(s?) suddenly flips from the — root to
the + root of the quadratic. This explains how E(sT) can be discontinuous as
s T 1, even though the negative root for H(s) is continuous as s T 1 and all the
working of Section 4.9 still applies for s = 1. The reason is that we suddenly
switch from the — root to the + root at s = 1.

When |s| > 1, the conditional expectations are not finite so the working of
Section 4.9 no longer applies.




The problem with being abstract . ..

e Each card hasaletter on onesdeand anumber on theother.
o We wish to test the following rule:

|f the card hasa D on one side,
then it hasa 3 on the other side.

o Which card or cards should you turn over, and ONLY these
cards, in order totest therule?

At aparty ...

|f you are drinking alcohal,
you must be 18 or over.

o Each card hasthe person’s age on one side, and their drink
on the other side.

o Which card or cards should you turn over, and ONLY these
cards, in order totest therule?

uaa.
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Chapter 5: Mathematical Induction

5.1

So far in this course, we have seen some techniques for dealing with stochastic
processes: first-step analysis for hitting probabilities (Chapter 2), and first-step
analysis for expected reaching times (Chapter 3). We now look at another tool
that is often useful for exploring properties of stochastic processes: proof by
mathematical induction.

Proving things in mathematics

There are many different ways of constructing a formal proof in mathematics.
Some examples are:

Proof by counterexample: a proposition is proved to be not generally true
because a particular ezample is found for which it is not true.

Proof by contradiction: this can be used either to prove a proposition is
true or to prove that it is false. To prove that the proposition is true (say),
we start by assuming that it is false. We then explore the consequences of
this assumption until we reach a contradiction, e.g. 0 = 1. Therefore something
must have gone wrong, and the only thing we weren’t sure about was our initial
assumption that the proposition is false — so our initial assumption must be
wrong and the proposition is proved true.

A famous proof of this sort is the proof that there are infinitely many prime
numbers. We start by assuming that there are finitely many primes, so they
can be listed as pi, pa, ..., pn, Where p,, is the largest prime number. But then
the number p; X po X ... X p, + 1 must also be prime, because it is not divisible
by any of the smaller primes. Furthermore this number is definitely bigger than
Pn- S0 we have contradicted the idea that there was a ‘biggest’ prime called p,,
and therefore there are infinitely many primes.

Proof by mathematical induction: in mathematical induction, we start
with a formula that we suspect is true. For example, I might suspect from
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observation that > ,_; k = n(n + 1)/2. T might have tested this formula for
many different values of n, but of course I can never test it for all values of n.
Therefore I need to prove that the formula is always true.

The idea of mathematical induction is to say: suppose the formula is true for
all n up to the value n = 10 (say). Can I prove that, if it is true for n = 10,
then it will also be true for n = 117 And if it is true for n = 11, then it will
also be true for n = 127 And so on.

In practice, we usually start lower than n = 10. We usually take the very easiest
case, n = 1, and prove that the formula is true for n = 1: LHS = Z,lle k =
1 =1 x2/2=RHS. Then we prove that, if the formula is ever true for n = x,
then it will always be true for n = x + 1. Because it is true for n = 1, it must
be true for n = 2; and because it is true for n = 2, it must be true for n = 3;
and so on, for all possible n. Thus the formula is proved.

Mathematical induction is therefore a bit like a first-step analysis for proving
things: prove that wherever we are now, tlet step will always be OK. Then
if we were OK at the very beginning, we will be OK for ever.

The method of mathematical induction for proving results is very important in
the study of Stochastic Processes. This is because a stochastic process builds
up one step at a time, and mathematical induction works on the same principle.

Example: We have already seen examples of inductive-type reasoning in this
course. For example, in Chapter 2 for the Gambler’s Ruin problem, using
the method of repeated substitution to solve for p, = P(Ruin |start with $x),
we discovered that:

® py=2p —1
® p3=3p1 — 2
® py=4p; —3

We deduced that p, = xp; — (x — 1) in general.

To prove this properly, we should have used the method of mathematical
induction.
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Mathematical Induction by example

Question: Prove by induction that Z k=

This example explains the style and steps needed for a proof by induction.

1
M for any integer n. (%)

k=1

Approach: follow the steps below.

(i) First verify that the formula is true for a base case: usually the smallest appro-

priate value of n (e.g. n = 0 or n = 1). Here, the smallest possible value of n is
n =1, because we can’t have >, _,.

First verify (x) is true whem = 1.

1
LHS = Zk = 1.
k=1

1 x2

RHS= =1=LHS

So(*) is proved fom = 1.

Next suppose that formula (x) is true for all values of n up to and including
some value . (We have already established that this is the case for z = 1).

Using the hypothesis that (x) is true for all values of n up to and including =,
prove that it is therefore true for the value n = x + 1.
Now suppose thdt) is true forn = 1,2, ..., x for somex.

= 1
Thus we can assume that = @ (a)

k=1
((a) for ‘allowed’ info)

We need to show that (k) holds forn = x, then it must also hold fat = x + 1.
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Require to prove that

Z b — (x + 1)2(.7: + 2) (54)
k=1

(Obtained by puttingh = x + 1 in (x)).

r+1

LHSof () =) 'k = > k + (z+1) by expanding the sum
k=1 k=1

— w + (z+1) using allowed info (a)
€T .
= (x+1) (5 - 1) rearranging
(4 1)(z+2)
B 2
= RHS of (xx).
This shows that:
d ko= @ whenn = z + 1.
k=1

So, assumingx) is true forn = x, it is also true fom = = + 1.

(iii) Refer back to the base case: if it is true for n = 1, then it is true forn = 1+1 = 2
by (ii). If it is true for n = 2, it is true for n = 2+ 1 = 3 by (ii). We could go
on forever. This proves that the formula (%) is true for all n.

We provedx) true forn = 1, thus(x) is true for all integers, > 1. ]
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General procedure for proof by induction

The procedure above is quite standard. The inductive proof can be summarized
like this:

Question: prove that f(n) = g(n) for all integers n > 1. (%)

Base casen = 1. Prove thatf(1) = g(1) using

LHS = f(1)

= ¢(1) = RHS
General casesupposéx) is true forn = x:

SO f(x) = g(x). (a) (allowed info)

Prove thatx) is therefore true fon = = + 1:
RTP fla+1)=g(z+1). (%)
LHS(xx) = f(x+1)

| some expression breaking dowfr + 1)
N into f(x) and an extra term im + 1

= { substitutef (x) = g(x) in the line above} by allowed (a)
= {do some working§

= glz+1)

— RHS*).

Conclude:(x) is proved forn = 1, so it is proved fom = 2, n = 3,
n=4,...

(x) is therefore proved for all integens> 1. O
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5.3 Some harder examples of mathematical induction

Induction problems in stochastic processes are often trickier than usual. Here
are some possibilities:

e Backwards induction: start with base case n = N and go backwards,
instead of starting at base case n = 1 and going forwards.

e Two-step induction, where the proof for n = x 4 1 relies not only on the
formula being true for n = x, but also on it being true for n = x — 1.

The first example below is hard probably because it is too easy. The second
example is an example of a two-step induction.

Example 1: Suppose that po = 1 and p, = ap,1 for all x = 1,2,.... Prove by
mathematical induction that p, = 1/a" forn =0,1,2,.. ..

Wish to prove
1
po=— Tforn=0,1,2,... (%)
an
Information given:

Px+1 —

Dz (Gl)

1
? (G2)

Po =
Base casen = 0.

LHS = p, = 1 by information givernG-).
RHS:L:%:lzLHS

«
Therefore(x) is true for the base case= 0.

General case: suppose that is true forn = x, SO we can assume

1
Pz = ot (CL)
Wish to prove thatx) is also true fomn = = + 1: i.e.
1

RTP  p,.1 = T (%)
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LHS of (xx) = p,s1 = é x p, by given(Gy)
1 1
= — x — byallowed (a)
a ot
1
- CE‘T'H
= RHS of(»*)

So if formula(x) is true forn = x, it is true forn = x + 1. We have shown it is
true forn = 0, so itis true for alh =0,1,2, .. .. O

Example 2: Gambler’s Ruin. In the Gambler’s Ruin problem in Section 2.7,
we have the following situation:

e p, = P(Ruin|start with $x);
e We know from first-step analysis that p, 1 = 2p, — ps1 (Gh)

e We know from common sense that py = 1 (G2)

e By direct substitution into (G7), we obtain:

p2 = 2p1—1
p3 = 3p1—2

e We develop a suspicion that for all x =1,2,3,...,
pr=zpr—(z—1) (%)

e We wish to prove () by mathematical induction.

For this example, our given information, ifG,), expresses,. in terms of both
p. andp,_1, SO we need two base cases. Wse 1l andx = 2.
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Wish to provep, = xp; — (z — 1) (%).
Base case = 1:

RHS=1 Xpl—O:plzLHS.
.. formula(x) is true for base case= 1.
Base case = 2:

LHS =p, =2p; — 1 by information giver(G,)
RHS=2x p, — 1 = LHS.
.. formula(x) is true for base case= 2.
General case: suppose tha is true for allz up tox = k.
So we are allowed:
(x = k) pr = kpr—(k—1) (a1)
(z=Fk—1) pe1 = (k=Dpi—(k=2)  (a)

Wish to prove thatx) is also true for: = k + 1, i.e.
RTP proi=(k+1pi—k  (x%)
LHS of (xx) = pri

= 2pr —pr-1 by given information G,)

= 2{kp = (k=D = { (k= Dpr = (- 2)}
by allowed(a;) and(as)

_ p1{2k—(k—1)}—{Q(k—l)—(k—Q)}

= (k+1)p—k

= RHS of(xx)

So if formula(x) is true fore = k — 1 andx = k, itis true forx = k+ 1. We have
shown it is true for: = 1 andx = 2, so itis true for ale = 1,2, 3, . . .. O
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Chapter 6: Branching Processes:

The Theory of Reproduction

Although the early development of Probability Theory was motivated by prob-
lems in gambling, probabilists soon realised that, if they were to continue as a
breed, they must also study reproduction.

Reproduction is a complicated business, but considerable in-
u sights into population growth can be gained from simplified

models. The Branching Process is a simple but elegant

model of population growth. It is also called the Galton-
Watson Process, because some of the early theoretical re-
sults about the process derive from a correspondence between
Sir Francis Galton and the Reverend Henry William Watson

in 1873. Francis Galton was a cousin of Charles Darwin. In
later life, he developed some less elegant ideas about repro-
duction — namely eugenics, or selective breeding of humans.

Luckily he is better remembered for branching processes.
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6.1 Branching Processes

Consider some sort of population consisting of reproducing individuals.

Examples: living things (animals, plants, bacteria, royal families);
diseases; computer viruses;
rumours, gossip, lies (one lie always leads to another!)

Start conditions: Start at timen = 0, with a single individual.

FEach individual: lives for 1 unit of time. At timen = 1, it produces a family of
oftspring, and immediately dies.

How many offspring? Could be 0, 1, 2, .... This is the family siz&é. (“Y”
stands for “number of Young”).

FEach offspring: lives for 1 unit of time. At timen = 2, it produces its own family
of oftspring, and immediately dies.

and so on...

Assumptions

1. Allindividuals reproduce independently of each other.

2. The family sizes of dierent individuals are independent, identically dis-
tributed random variables. Denote the family sizé'bgnumber of Young).

Family size distribution, Y P(Y =k) =

439

}@ @ o B B
P(Y=y) i P D4
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Definition: A branching process is defined as follows.

e Single individual at time n = 0.

e Every individual lives exactly one unit of time, then produces Y offspring,
and dies.

e The number of offspring, Y, takes values 0, 1, 2, ..., and the probability
of producing k offspring is P(Y = k) = py.

e All individuals reproduce independently. Individuals 1,2, ..., n have family
sizes Y1, Y5, ... Y, where eachy; has the same distribution &s

e Let Z, be the number of individuals born at time, forn = 0,1,2,....
Interpret Z,,’ as the ‘siz’ of generatiom.

e Then the branching process is {Zy, Z1, Zo, Z3,...} ={Z, : n € N}

Definition: The state of the branching process at time n is z,, where each,, can
take value$,1,2,3, .... Note that:, = 1 always.
2, represents the szof the population at time.

Note: When we want to say that two random variables X and Y have the same
distribution, we write: X ~ Y.
For example: Y; ~ Y, wherey; is the family size of any individual

Note: The definition of the branching process is easily generalized to start with
more than one individual at time n = 0.

Branching Process
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6.2 Questions about the Branching Process

When we have a situation that can be modelled by a branching process, there
are several questions we might want to answer.

If the branching process is just beginning, what will happen in the future?

1. What can we find out about the distribution of Z, (the population siZe at
generation n)?

e can we find the mean and variance of Z,,?
— yes, using the probability generating function of familyesiy’;

e can we find the whole distribution of Z,,7
— for special cases of the family size distributivnwe can find the PGF of
Z, explicitly;

e can we find the probability that the population has become extinct by
generation n, P(Z,=0) 7
— for special cases where we can find the PGE,pfas above).

2. What can we find out about eventual extinction?

e can we find the probability of eventual extinction, P (lim Ly = O) ?
- n—o0
— yes, always: using the PGF ©f

e can we find general conditions for eventual extinction?
— yes: we can find conditions that guarantee that extinctidhoacur with
probability 1.

e if eventual extinction is definite, can we find the distribution of the time to

extinction?
— for special cases where we can find the PGE,pfas above).

Example: Modelling cancerous growths. Will a colony of cancerous cells become
extinct before it is sufficiently large to overgrow the surrounding tissue?
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If the branching process is already in progress, what happened in the past?

1. How long has the process been running?

e how many generations do we have to go back to get to the sioghmon
ancestor?

2. What has been the distribution of family size over the generations?

3. What is the total number of individuals (over all generations) up to the present
day?

Example: 1t is believed that all humans are descended from a single female an-
cestor, who lived in Africa. How long ago?
— estimated at approximately 200,000 years.
What has been the mean family size over that period?
— probably very close to 1 femaldtepring per
female adult: e.g. estimate1.002.

6.3 Analysing the Branching Process

Key Observation: every individual in every generation starts a new, indepehd
branching process, as if the whole process were startingedidginning again.

£ R
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Z, as a randomly stopped sum

Most of the interesting properties of the branching process centre on the distri-
bution of Z,, (the population size at time n). Using the Key Observation from

overleaf, we can find an expression for the probability generating function of
L.

Consider the following.

e The population size at time— 1 is given byZ,, .
e Label the individuals at time — 1 as1,2.,3,...,7Z,_1.

e Eachindividual,?2, ..., Z, i starts a new branching process. ketys, ..., Y, |
be the random family sizes of the individual?, . .., Z, ;.

e The number of individuals at time, Z,, Is equal to the total number of
oftspring of the individuals, 2. ..., Z,_,. That s,

Zn—l

ThusZ, is a randomly stopped sura:sum ofY7, Y5, ..., randomly stopped
by the random variablg, .

Note: 1. EachY; ~ Y: that is, each individual = 1, ..., Z,_; has the same
family size distribution.

2. 1,Y,, ..., Y, | areindependent.
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Probability Generating Function of Z,

Let Gy (s) = E(s¥) be the probability generating function of Y.
(Recall that Y is the number of Young of an individual: the family size.)

Now Z,, is a randomly stopped sum: it is the sum of Y7, Y5, ..., stopped by the
random variable Z,, 1. So we can use Theorem 4.6 (Chapter 4) to express the
PGF of Z,, directly in terms of the PGFs of Y and Z,,_;.

By Theorem 4.6, if Z, =Y1 + Yo+ ...+ Y, |, and Z,_; is itself random, then
the PGF of Z, is given by:

G2,(5) = G, (Gr(5)), (%)
whereG ;. . is the PGF of the random variablg,_ .

For ease of notation, we can write:

Gz (s) = Gyu(s), Gz, (s) =Gph1(s), and so on.

Note that Z; =Y (the number of individuals born at tine= 1),
so we can also write:

Gy (s) = G1(s) = G(s) (for simplicity).
Thus, from (&),

Gn(s) = Gp (G(s)) (Branching Process Recursion Formulal)

Note:
1. G,(s) = E (s?), the PGF of the population gzt timen, Z,,.

2. G,-1(s) = E (s?—), the PGF of the population €zt timen — 1, Z,_;.

3. G(s) =E (s¥) =E (s”*), the PGF of the family sizéy .
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We are trying to find the PGF of Z,, the population size at time n.
So far, we have: Gn(s) = Gp (G(s)) (%)

But by the same argument,

Gor(r) = G“(G(r)).
(user instead of to avoid confusion in the next line.)

Substituting in (%),

Gu(s) = G (G(s)>

n—3 J3times

and so on, until we finally get:

Guts) = G (G(G(6(-60)-)))

N 7

n — 1 times

- E;(G(G(G(...G(s)...))))

N 7

=G n — 1 times

- G(G(G(...G(s)...)>>.

\ . 7

n times

We have therefore proved the following Theorem.
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Theorem 6.3: Let G(s) = E(s") = > p,s’ be the PGF of the family size

distribution, Y. Let Zy = 1 (start from a single individual at time 0), and let
Z, be the population size at time n (n =0,1,2,...). Let G,,(s) be the PGF of
the random variable Z,,. Then

Gn(s):G(G(G<...G(s)...>>>. O

A\ 7

n times

Note: G,(s) = G<G <G< . G(s) ... ))) is called the n-fold iterate ofG.

6.4

N 7

n times

We have therefore found an expression for the PGF of the population size at
generation n, although there is no guarantee that it is possible to write it down
or manipulate it very easily for large n. For example, if Y has a Poisson(\)
distribution, then G(s) = ¢**~1, and already by generation n = 3 we have the
following fearsome expression for G3(s):

(6)\(6’\(5_1)1)_ )
Gs(s) =e : (Or something like that!)

However, in some circumstances we can find quite reasonable closed-form ex-
pressions for G, (s), notably when Y has a Geometric distribution. In addition,
for any distribution of ¥ we can use the expression G, (s) = Gn1<G(s)> to

derive properties such as the mean and variance of Z,,, and the probability of
eventual extinction (P(Z, = 0) for some n).

What does the distribution of Z,, look like?

Before deriving the mean and the variance of Z,,, it is helpful to get some
intuitive idea of how the branching process behaves. For example, it seems rea-
sonable to calculate the mean, E(Z,), to find out what we expect the population
size to be in n generations time, but why are we interested in Var(Z,)?

The answer is that Z,, usually has a “boom-or-bust” distribution: either the
population will take off (boom), and the population size grows quickly, or the
population will fail altogether (bust). In fact, if the population fails, it is likely
to do so very quickly, within the first few generations. This explains why we are
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interested in Var(Z,). A huge variance will alert us to the fact that the process
does not cluster closely around its mean values. In fact, the mean might be
almost useless as a measure of what to expect from the process.

Simulation 1: Y ~ Geometric(p = 0.3)

The following table shows the results from 10 simulations of a branching process,
where the family size distribution is Y ~ Geometric(p = 0.3).

Simulation Z() Z1 Z2 Zg Z4 Z5 Z6 Z7 Zg Zg Z10
1 1 0 0 0 0 0 0 0 0 0 0
2 11 0 0 0 0 0 0 0 0 0
3 14 19 42 81 181 433 964 2276 5383 12428
4 13 3 5 3 15 29 8 207 435 952
5 10 0 0 O 0 0 0 0 0 0
6 11 0 0 0 0 0 0 0 0 0
7 12 8 26 68 162 360 845 2039 4746 10941
8 11 0 0 O 0 0 0 0 0 0
9 11 0 0 0 0 0 0 0 0 0

10 1 1 4 13 18 39 104 294 690 1566 3534

Often, the population is extinct by generation 10. However, when it is not
extinct, it can take enormous values (12428, 10941, ...).

The same simulation was repeated 5000 times to find the empirical distribu-
tion of the population size at generation 10 (Z;g). The figures below show
the distribution of family size, Y, and the distribution of Z;y from the 5000

simulations.
Family Size, Y Zo
™
© o
—
o
8
N 4
o o
<«
— S
© S
| -l
o I.—— o | I--_f

10 15 20 25 30 0 20000 60000

family size Zo
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In this example, the family size is rather variable, but the variability in Z is
enormous (note the range on the histogram from 0 to 60,000). Some statistics
are:

Proportion of samples extinct by generation 10: 0.436

Summary of Zn:

Min 1st Qu Median Mean 3rd Qu Max
0 0 1003 4617 6656 82486
Mean of Zn: 4617.2

Variance of Zn: 53937785.7

So the empirical variance is Var(Zjg) = 5.39 x 10" . This perhaps contains
more useful information than the mean value of 4617. The distribution of Z,
has 43.6% of zeros, but (when it is non-zero) takes values up to 82,486. Is it
really useful to summarize such a distribution by the single mean value 46177

For interest, out of the 5000 simulations, there were only 35 (0.7%) that had a
value for Zyy greater than 0 but less than 100. This emphasizes the “boom-or-
bust” nature of the distribution of Z,,.

Simulation 2: Y ~ Geometric(p = 0.5)

We repeat the simulation above with a different value for p in the Geometric
family size distribution: this time, p = 0.5. The family size distribution is
therefore Y ~ Geometri¢p = 0.5).

Simulation | Zg Z1 Zo Zs Zy Zs Zs Zr Zs Ze o
111 0 0 0 0O 0O 0O 0O 0O 0 0
21 0 0 0 O O O O O 0 O
3/ 1.0 0 0 0 0 0O O O 0 O
41 0 0 0 O O O O O O O
501 1 0 0 0 O O O O 0 O
6/ 1 7 9 17 15 20 19 & 7 13 35
711 2 5 2 5 8 8 3 3 0 0
8/ 1 2 0 0 0 0O 0O O 0O 0 O
91 0 0 0O O O O O 0O 0 O
|1 0o 0 0 0 O O O O 0 O
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This time, almost all the populations become extinct. We will see later that
this value of p (just) guarantees eventual extinction with probability 1.

The family size distribution, ¥ ~ Geometric(p = 0.5), and the results for
Z1 from 5000 simulations, are shown below. Family sizes are often zero, but
families of size 2 and 3 are not uncommon. It seems that this is not enough
to save the process from extinction. This time, the maximum population size
observed for Z;y from 5000 simulations was only 56, and the mean and variance
of Z19 are much smaller than before.

Family Size, Y Zo

0.4 0.6
0.10 0.15

0.2
0.05

0 5 10 15 0O 10 20 30 40 50 60

0.0
0.0

family size Z10

Proportion of samples extinct by generation 10: 0.9108
Summary of Zn:
Min 1st Qu Median Mean 3rd Qu Max
0 0 0 0.965 0 56

Mean of Zn: 0.965
Variance of Zn: 19.497

What happens for larger values of p?

It was mentioned above that Y ~ Geometric(p = 0.5) just guarantees eventual
extinction with probability 1. For p > 0.5, extinction is also guaranteed, and
tends to happen quickly. For example, when p = 0.55, over 97% of simulated
populations are already extinct by generation 10.
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6.5 Mean and variance of Z,

The previous section has given us a good idea of the significance and interpre-
tation of E(Z,,) and Var(Z,). We now proceed to calculate them. Both E(Z,)
and Var(Z,) can be expressed in terms of the mean and variance of the family
size distributiony .

Thus, letE(Y) = u and let VatY') = . These are the mean and variance of the
number of @tspring of a singlendividual.

Theorem 6.5: Let {Zy, Z1, Z5, ...} be a branching process with Z; = 1 (start with
a single individual). Let Y denote the family size distribution, and suppose that
E(Y) = p. Then

E(Zn> = pu".

Proof:

By page 1217, =Y, + Y>+ ...+ Y, |, Iis arandomly stopped sum:

Ln—1
Zy=)Y_Y,
1=1
Thus, from Section 3.4 (page 62),
E(Z,) = E(Y;) xE(Z,1)
= pxE(Zy-1)

= PHE(Zn2)}
= MQE(ZH—2)

— "E(Z)

n

= "o
= u". O]
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Examples: Consider the simulations of Section 6.4.

0.
1. Family size Y ~ Geometric(p = 0.3). Sou =E(Y) = - = 3= 2.33.

=J

IR
)

Expected population size by generation n = 10 is:
E(Zy) = p' = (2.33)'% = 4784.

The theoretical value, 4784, compares well with the sample mean from 5000
simulations, 4617 (page 126).

0.5
2. Family size Y ~ Geometric(p = 0.5). Sou =E(Y) = 1 0F = 1, and
P :

E(Zw) = Mlo = (1)10 = 1.

Compares well with the sample mean of 0.965 (page 127).

Variance of Z,,

Theorem 6.5: Let {7, Z1, Z5,...} be a branching process with Z; = 1 (start with
a single individual). Let Y denote the family size distribution, and suppose that
E(Y) = p and Var(Y) = o Then

o‘n if u=1,

1 —
OQM”_l( ,u) ifu#1 (>1lor <1).

Proof:

Write V,, = Var(Z,,). The proof works by finding a recursive formula for V.
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Using the Law of Total Variance for randomly stopped sums from Section 3.4
(page 62),

anl
Z= 3oy
=1
= Var(Z,) = {E(Y)}* x Var(Z,_,) + Var(¥;) x E(Z,_)
= Vo, = Vi +0°E(Z,1)

~ V, = 2V, oyt

n—1

using E(Z,_1) = p"~ as above.

Also,
Vi = Var(Z;) = Var(Y) = o°.

Find V,, by repeated substitution:

Vi = o

Vo = pi*Vi+ou = pPo’+ po’

= po’(1+ p)

Vs = Vot oy’ = pPo’ (14 pu+ p?)

Vi = Vot o’ = pPo’ (L+p+ i + 1)
etc.

Completing the pattern,
Vn — ,u”_102(1+,u+,u2+...+,u"_1)

n—1
_ n—1_2 r
= p"'o?y p

r=0

1 — "
= " lo? < ] a ) : Valid for pu # 1.
—

(sum of first n terms of Geometric series)
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When p=1":
V, = 1" (1°+ 1"+ ... +1"") = o°n.
n t;;nes
Hence the result:
a’n if u=1,
Var(Z,) = i
2 n—1 <1 H ) i
ol if p#1 O]
L—p

Examples: Again consider the simulations of Section 6.4.

0.7
1. Family size Y ~ Geometric(p = 0.3). So p=E(Y) = 1_ i 2.33.
P :
0.7
2 Var(y) = 4 — — 7.78.
7oA T sy
2 o (1—p" 7
Vaf(Zl()) =0l 1 =5.72 x 10".
— p

Compares well with the sample variance from 5000 simulations, 5.39 x 107

(page 126).
o . qg 0.5
2. Family size Y ~ Geometric(p = 0.5). So p=E(Y) === 0F = 1.
P .
0.5 .
o? = \VarY) = % = 05)° = 2. Using the formula for Vd1Z,,) whenu = 1, we
P .
have:

Var(Zyy) = o’n = 2 x 10 = 20.
Compares well with the sample variance of 19.5 (page 127).
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Revision: a branching process consists of reproducing individuals.

e All individuals are independent.
e Start with a single individual at time 0: Z; = 1.
e Each individual lives a single unit of time, then has Y offspring and dies.

e Let Z, be the siZe of generation n: the number of individuals born at
time n.

e The branching process is {Zy = 1, Z1, Zs, .. .}.

Branching Process Recursion Formula

This is the fundamental formula for branching processes. Let G, (s) = E(s7")
be the PGF of Z,,, the population size at time n. Let G(s) = G1(s), the PGF
of the family size distribution Y, or equivalently, of Z;. Then:

Go(s) = Gn_l(G(s)) - G(G(G( LLG(s).. ))) - G(Gn_l(s)).

\ . g

Tf
n times
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7.1 Extinction Probability

One of the most interesting applications of branching processes is calculating
the probability of eventual extinction. For example, what is the probability
that a colony of cancerous cells becomes extinct before it overgrows the sur-
rounding tissue? What is the probability that an infectious disease dies out
before reaching an epidemic? What is the probability that a family line (e.g.
for royal families) becomes extinct?

It is possible to find several results about the probability of eventual extinction.

Extinction by generation n

The population is extinct by generation n if Z, =0
(no individuals at time).

If Z, = 0, then the population is extinct >,
for ever: Zt — O for a.llt Z n. '_E{tfr:ruh”'_flfarﬁn'r

Definition: Define event F,, to be the event
E, ={Z, = 0} (event that the population is extinct by generatign

Note: E0§E1§E2§E3§E4§
This is because event £; forces E; to be true for all j > ¢, so Ej is a ‘part’ or
subset of E; for j > 1.

Ultimate extinction

At the start of the branching process, we are interested in the probability of ulti-
mate extinction: the probability that the population will be extinct by gesgon
n, for anyvalue ofn.

We can express this probability in different ways:

0 I.e. extinct by generation 0
P(ultimate extinction) = P (U En> extinct by generation 1 or
n=0 extinct by generation 2 or .

Or: P(ultimate extinction) = P <lim En> . (i.e.P(extinct by generationc)).

n—oo



THE UNIVERSITY
OF AUCKLAND

NEW ZEALAND
Te Whare Wananga o Tamaki Makaurau 1 34

Note: By the Continuity Theorem (Chapter 2), and because £y C Fy C Fy C ...,
we have:

P(ultimate extinction) = P (lim En) = lim P(E,).

n—oo n—oo

Thus the probability of eventual extinction is the limit as n — oo of the prob-
ability of extinction by generation n.

We will use the Greek letter Gamma () for the probability of extinction: think
of Gamma for ‘all Gone’!

v = P(£,) = P(extinct by generation).

v = P(ultimate extinctioi.

By the Note above, we have established that we are looking for:

P(ultimate extinction = ~v = lim -,. y
n—oo

FExtinction 1s Forever

Theorem 7.1: Let v be the probability of ultimate extinction. Then

~ is the smallest non-negative solution of the equation
G(s) = s, whereG(s) Is the PGF of the family size distributiom,.

To find the probability of ultimate extinction, we therefore:

e find the PGF of family sizey : G(s) = E(sY);
e find values ok that satisfyG(s) = s;

e find the smallesof these values that is 0. This is the required value.

G(7v) =7, and 7 is the smallest value > 0 for which this holds.
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Note: Recall that, for any (non-defective) random variable Y with PGF G(s),

G)=E(1")=> P =y) =) PY =y =1

So G(1) = 1 always, and therefore there always exists a solution f6i(s) = s
in [0, 1].

The required value v is the smallest such solution > 0.

Before proving Theorem 7.1 we prove the following Lemma.

Lemma: Let v, =P(Z, =0). Then v, = G(y,_1).
Proof: If G,(s) is the PGF ot/,,, thenP(Z, = 0) = G,,(0). (Chapter 4.)

So~, = G,(0). Similarly,~,,—1 = G,_1(0).

Now G, (0) :g(G(G(...G(O) . ))) - G(Gn1(0)>.

7

n times

S0 = G<Gn1(0)> = G<7n1>. O

Proof of Theorem 7.1: We need to prove:
(i) G(v) =

(ii) v is the smallest non-negative value for which G(v) = .
That is, if s > 0 and G(s) = s, then v < s.

Proof of (i):

.
From¥% overleaf ~= lim v, = lim G<7n_1> (by Lemma)

n—oo n—oo

= G( lim %_1> (G is continuous)
n—0o0

= G(v).
SoG(vy) = v, as required.
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Proof of (ii):
First note that G(s) is an increasing function on [0, 1]:
G(s) =E(s") = > s'P(Y =y)
y=0
= G'(s) = Y ys" 'P(Y =y)
y=0
= G'(s) > 0 for0<s<1, so( isincreasing on [0, 1].
(G(s) is increasing on [0, 1] means that:
s1< sy = G(s1) <G(s9) forany si,s9 € [0,1]. X
The branching process begins with Zy = 1, so
P(extinct by generation 0) = 7y = 0.
At any later generation, v, = G(,-1) by Lemma.
Now suppose that s > 0 and G(s) = s. Then we have:
0<s = Y < s (because vy = 0)
= G(y) <G(s) (by )
l.e. "n<s
= G(n) <G(s) (by &)
l.e. Yo < S
Thus Y < S for all n.
So if s > 0 and G(s) = s, then v = lim ~, <s. O]

n—oo
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Example 1: Let {Zy = 1,71, Z5,...} be a branching process with family size
distribution Y ~ Binomial(2,1). Find the probability that the process will
eventually die out.

Solution:

Let G(s) = E(s¥). The probability of ultimate extinction is, where~ is the
smallest solutiory 0 to the equatiord:(s) = s.

ForY ~ Binomialn,p), the PGF isZ(s) = (ps + q)" (Chapter 4).

So ifY ~ Binomial2,1) thenG(s) = (s + 2)>.

We need to solvé(s) = s: 3
(1o 32 _

G(s)=(35+7) s S
1 2 6 9 _

65 TSt = S 0

1 .2 10 9 °

65 ~ 15T = 0
o
o

0.0 0.5 1.0 15

S
Trick: we know thatG(1) = 1, sos = 1 has got to be a solution. Use this for a

quick factorization.
1 9
(s—1) (558 — 1) =0.
Thus
s=1
or
%S = 19—6 = s5=9

The smallest solutior 0 iss = 1.

Thus the probability of ultimate extinctionis= 1.

Extinction is_definitevhen the family size
distribution isY ~ Binomial2,1).
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Example 2: Let {Zy = 1,7Z1,Z5,...} be a branching process with family size
distribution Y ~ Geometric(3). Find the probability that the process will
eventually die out.

Solution:

Let G(s) = E(s¥). ThenP(ultimate extinction = ~, where~ is the smallest
solution> 0 to the equatiotz(s) = s.

ForY ~ Geometri¢p), the PGF is#(s) = *; (Chapter 4).

. . 1/4 1
l pum— pu—
So ifY ~ Geometri¢;) thenG(s) /0 135

We need to solvél(s) = s:

G(s)=14 = s 3

4s —3s? = 1 ©

—

32 —4s+1 = 0 o
S

Trick: know thats = 1 is a solution. o
o

0.0 0.4 0.8 1.2
(s—1)(3s—1)=0. S
Thus
s=1

or

The smallest solutior 0 is s = %

1

Thus the probability of ultimate extinction is=

Extinction is possible but not definite when the
family size distribution i§” ~ Geometri¢?).
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7.2 Conditions for ultimate extinction

It turns out that the probability of extinction depends crucially on the value of
1, the mean of the family size distribution

Some values of i guarantee that the branching process will die out with prob-
ability 1. Other values guarantee that the probability of extinction will be
strictly less than 1. We will see below that the threshold value is p = 1.

If the mean number of offspring per individual p is more than 1 (so on average,
individuals replace themselves plus a bit extra), then the branching process is
not guaranteed to die out — although it might do. However, if the mean number
of offspring per individual p is 1 or less, the process is guaranteed to become
extinct (unless Y = 1 with probability 1). The result is not too surprising
for p > 1 or p < 1, but it is a little surprising that extinction is generally
guaranteed if pu = 1.

Theorem 7.2: Let {Zy = 1,7y, Z5,...} be a branching process with family size
distribution Y. Let u = E(Y) be the mean family size distribution, and let ~
be the probability of ultimate extinction. Then

(i) If u > 1, theny < 1: extinction is_notguaranteed if, > 1.
(ii) If u < 1, theny = 1: extinction isguaranteed if, < 1.

(iii) If u =1, theny = 1 unlessthe family size is always constantyat= 1.

Lemma: Let G(s) be the PGF of family size Y. Then G(s) and G'(s) are strictly
increasing for 0 < s < 1, as long as Y can take values > 2.

oo

Proof: G(s)=E(s") =) s'P(Y =y).

00 y=0
So G'(s) = Zysyfl]P(Y =y)>0for 0 <s <1,
y=1
because all terms are > 0 and at least 1 term is > 0 (if P(Y > 2) > 0).
Similarly, G"(s) = Zy(y — 1) *P(Y =y) >0for 0 < s < 1.
y=2

So G(s) and G'(s) are strictly increasing for 0 < s < 1. O
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Note: When G”(s) > 0 for 0 < s < 1, the function G is said to be convex on that
interval.

G(s) G(s)

S S

Convex: G”(s) >0 Concave: G”(s) <0

G"(s) > 0 means that the gradiendpf G is constantly increasing for< s < 1.

Proof of Theorem 7.2: This is usually done graphically.

The graph of G(s) satisfies the following conditions:
1. G(s) Is increasing and strictly convex (as longyagan be> 2).

G(0) =P(Y = 0) > 0.
. G(1) =1.

N

3
4. G'(1) = p, so the slope of:(s) ats = 1 gives the value..

ot

. The extinction probability; is the smallest value 0 for whichG(s) = s.

t . H=gradient at 1
t=G(s) , _
/I A / t=s (gradient=1,
P(Y=0) . I
1 ! S
0 v 1
(extinction

probability)



Case (i): p > 1

Wheny > 1, the curve(s) is
forced beneath the line= s ats = 1.
The curvei(s) has to cross the
linet = s again to meet the-axis
atP(y =0).

Thus there must be a solutien< 1
to the equatioftz(s) = s.

Case (ii): p < 1

When p < 1, the curve G(s) is
forced above the line t = s for s < 1.
There is no possibility for the curve
G(s) to cross the line t = s again
before meeting the t-axis.

Thus there can be no solution < 1
to the equation G(s) = s, so v = 1.

The exception is where Y can take only
values 0 and 1, so G(s) is not strictly

P(Y=0) ®

sy THE UNIVERSITY
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p>1

/ t=g (gradient=1

t
1

P(Y=0)®

(7]

t=s (gradient=1)

convex (see Lemma). However, in that case

G(s) = po + p1s is a straight line, giving
the same result v = 1.

Case (iii): p=1

When p = 1, the situation is the same
as for p < 1.

The exception is where Y takes only the
value 1. Then G(s) = s for all 0 < s <1,
so the smallest solution > 0 is v = 0.

Thus extinction is guaranteed for p = 1,
unless Y = 1 with probability 1.

t
1

P(Y=0)®

wn

t=s (gradient=1)

wn
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Example 1: Let {Zy = 1,71, Z5,...} be a branching process with family size
distribution Y ~ Binomial(2,1), as in Section 7.1. Find the probability of
eventual extinction.

Solution:

Considery’ ~ Binomial2,1.) The mean ot isy =2 x 1 =1 < 1. Thus, by
Theorem 7.2,

v = P(ultimate extinction = 1.
(The longer calculation in Section 7.1 was not necessary.)

Example 2: Let {Zy = 1,71, Z5,...} be a branching process with family size
distribution Y ~ Geometric(3), as in Section 7.1. Find the probability of
eventual extinction.

Solution:

Considery ~ Geometri¢t.) The mean ol is y = *;1* = 3 > 1. Thus, by
Theorem 7.2,

v = P(ultimate extinction < 1.

To find the value ofy, we still need to go through the calculation presented in
Section 7.1. (Answery = 3.)

Note: The mean p of the offspring distribution Y is known as the criticality pa-
rameter.

o If 11 < 1, extinction is definite (7 = 1). The process is called subcritical.
Note that E(Z,,) = u* — 0 as n — oo.

e If 4 = 1, extinction is definite unless Y = 1. The process is called critical.
Note that E(Z,) = p" = 1 Vn, even though extinction is definite.

e If 1 > 1, extinction is not definite (7 < 1). The process is called supercritical.
Note that E(Z,) = " — oo as n — oc.




THE UNIVERSITY
OF AUCKLAND

NEW ZEALAND
Te Whare Wananga o Tamaki Makaurau 143

: bec :
BAD Luck | YOUT populations geepuienio ™ Extinct!

But how long have you got...?

7.3 Time to Extinction

Suppose the population is doomed to extinction — or maybe it isn’t. Either way;,
it is useful to know how long it will take for the population to become extinct.
This is the distribution of T', the number of generations before extinction. For
example, how long do we expect a disease epidemic like SARS to continue?
How long have we got to organize ourselves to save the kakapo or the tuatara
before they become extinct before our very eyes? %

1. Extinction | by ) time n

The branching process is extinct by time n if Z, = 0.

Thus the probability that the process has become extinct by time n is:
P(Z, =0)=G,(0) =,.

Note: Recall that G,,(s) = E(s%") = G(G (G( .G(s).. >>) :

| 7

-~

n times

There is no guarantee that the PGF G,,(s) or the value G, (0) can be calculated
easily. However, we can build up G,,(0) in steps:

egGg(O) = G(G(O)), thenGg(()) = G(GQ(O)), or evenG4(0) = GQ(GQ(O))
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2. Extinction @ time n

Let T" be the exact time of extinction. That is, 7' = n if generation n is the
first generation with no individuals:

T=n<«—= Z,=0 AND Z,;>0.

Now by the Partition Rule,
P(Z,=0NZy_1>0)+P(Z,=0NZ,_, =0)=P(Z,=0). (%)

But the event {Z, =0 N Z,_; = 0} is the event that the process is extinct by
generation n — 1 AND it is extinct by generation n. However, we know it will
always be extinct by generation n if it is extinct by generation n — 1, so the
Z, = 0 part is redundant. So

P(Zy, =0 NZy1=0)=P(Z,_1 =0) = Gp_1(0).

Similarly,

P(T=n)=P(Z,=0 N Zy1>0)=Gp(0) = Gp1(0) = ¥n — Yu_1.

This gives the distribution of 7', the exact time at which extinction occurs.

Example: Binary splitting. Suppose that the family size distribution is

v 0 with probability ¢ = 1 — p,
| 1 with probability p.

Find the distribution of the time to extinction.
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Solution:
Consider

G(s) =E(s") = ¢qs" +ps' = q+ps.
Go(s) = G(G(S)) =q+plg+ps) = q(1+p)+p°s.

Gs(s) = G(GQ(S)) =q+plg+pg+p’s) = ql+p+p’)+p’s.

Gn(s) = ql+p+p*+...+p" ) +p"s.

Thus time to extinction, T', satisfies

P(T=n) = Gy(0) — Gy 1(0)

= q(l+p+p*+...+p" ) —ql+p+p*+...+p"?)

n—1

= qp formn=1,2,...

Thus
T — 1 ~ Geometric(q).

It follows that E(T' —1) = £, so

- 1
E(T):Hg:#:a

Note: The expected time to extinction, E(7), is:

e finiteif u < 1;
e infinite if . = 1 (despite extinction being definite),dt is finite;

e infinite if ;1 > 1 (because with positive probability, extinction never
happens).

(Results not proved here.)
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7.4 Case Study: Geometric Branching Processes

Recall that G (s) = E(s%) = G(G(G( LG(s).. ))) .

| 7
-~

n times

In general, it is not possible to find a closed-form expression for G,(s). We
achieved a closed-form G, (s) in the Binary Splitting example (page 144), but
binary splitting only allows family size Y to be 0 or 1, which is a very restrictive
model.

The only non-trivial family size distribution that allows us to find a closed-form
expression for G,,(s) is the Geometric distribution.

When family size Y ~ Geometric(p), we can do the following:

e Derive a closed-form expression for G, (s), the PGF of Z,.

e Find the probability distribution of the exact time of extinction, 7'
not just the probability that extinction will occur at some unspecified time

()

e Find the full probability distribution of Z,: probabilities P(Z, = 0),
P(Z,=1),P(Z,=2),....

With Y ~ Geometric(p), we can therefore calculate just about every quantity
we might be interested in for the branching process.

1. Closed form expression for G,(s)

Theorem 7.4: Let {Zy = 1,71, Z,,...} be a branching process with family size
distribution Y ~ Geometric(p). The PGF of Z, is given by:

(

n—(n—1)s

if =qg=20.5
n+1—ns I ’

(0" = 1) —p(p" = 1)s

q
(Wt =1) = p(pt = 1)s

if p+#q, Whereuzﬁ
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Proof (sketch):

The proof for both p = ¢ and p # ¢ proceed by mathematical induction. We
will give a sketch of the proof when p = ¢ = 0.5. The proof for p # ¢ works in
the same way but is trickier.

Consider p = q = % Then

p 3 1
G pu— pum— 2 pum— .
() l—qgs 1-— 2—35

N[V

Using the Branching Process Recursion Formula (Chapter 6),

1 1 2—s 2—s
Gols) — G(G ) _ _ _ _ ,
2(s) ) =5=Gm "= L 22— —1 3-2s
. . . n—(n—1)s .
The inductive hypothesis is that G, (s) = , and it holds for n =1

n+1—ns
and n = 2. Suppose it holds for n. Then

n—(n-1Gs) _ n—(n=1) ()
G (s) = G (G(s)) = n+1-nG(s) — n+l-n(5)

2—s

(2—s)n—(n—1)
(2—=s)(n+1)—n

n+1—ns
n+2—(n+1)s

Therefore, if the hypothesis holds for n, it also holds for n + 1. Thus the
hypothesis is proved for all n. ]

2. Exact time of extinction, T

Let Y ~ Geometric(p), and let T' be the exact generation of extinction.
From Section 7.3,
P(T=n)=P(Z,=0)—-P(Z,.1=0)=G,0) -G, 1(0).

By using the closed-form expressions overleaf for GG,,(0) and G,,_1(0), we can find
P(T = n) for any n.
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3. Whole distribution of Z,,
1
From Chapter 4, P(Z,, =) = —'Gg)(()).
7!

Now our closed-form expression for G, (s) has the same format regardless of
whether =1 (p=0.5), or p# 1 (p # 0.5):

A — Bs
Gn(s) = :
(5) C — Ds
(For example, when g =1, we have A= D =n, B=n—1,C =n+1.) Thus:
A
P(Z,=0)=G,(0)=—
(Z,=0) = G,(0) = 5

(C—Ds)(—B)+ (A—-Bs)D AD — BC

Guls) = (C = Ds)? ~ (C=Ds)?
= B(Z=1) = 1G4(0) = ADC;QBC
o (—2)(~=D)(AD — BC)  2D(AD — BC)

n(8) = (C— Ds)? ~ T (C—Ds)y

- wz-n- oo - (A2529)(2)

= P(Z,=r)=-=G"(0) = (M> (D

— =1,2,...
D C) for r , 2,

(Exercise)

This is very simple and powerful: we can substitute the values of A, B, C, and
D to find P(Z,, = r) or P(Z,, <r) for any r and n.

Note: A Java applet that simulates branching processes can be found at:
http://www.dartmouth.edu/"chance/teaching_aids/books_articles/
probability_book/bookapplets/chapter10/Branch/Branch.html
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Chapter 8: Markov Chains

il oy mastors wWikere Yark awie, 1Al winaro Youye beem. ..

8.1 Introduction

So far, we have examined several stochastic processes using
transition diagrams and First-Step Analysis.

The processes can be written as { Xy, X1, Xo, ...},

where X, is the state at time.

A.A Markov

On the transition diagram, X; corresponds to 1856-1922
which box we are in at step

In the Gambler’s Ruin (Section 2.7), X; is the amount of money the gambler
possesses after toss t. In the model for gene spread (Section 3.7), X; is the
number of animals possessing the harmful allele A in generation ¢.

The processes that we have looked at via the transition diagram have a crucial

roperty in common:
property X1 depends only oiX;.

It does not depend upon Xy, Xq,..., X; 1.

Processes like this are called Markov Chains.

Example: Random Walk (see Chapter 4)

none of these steps matter for time t4‘|1 v 7D time t+]

PO

# x
Fe ¥ s

In a Markov chain, the
future depends only
upon the present:

NOT upon the past.
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Meet... e Markov fleas!

29
!I Glee- ‘Purpose-

flea  Forget-flea flea @[[ flea

The text-book image
of a Markov chain has 1
a flea hopping about at = | 3
random on the vertices =

of the transition diagram,
according to the probabilities shown.

The transition diagram above shows a system with 7 possible states:
State spacé = {1,2,3,4,5,6,7}.

Questions of interest

e Starting from state 1, what is the probability of ever reaching state 77

e Starting from state 2, what is the expected time taken to reach state 47

e Starting from state 2, what is the long-run proportion of time spent in
state 37

e Starting from state 1, what is the probability of being in state 2 at time
t? Does the probability converge as t — oo, and if so, to what?

We have been answering questions like the first two using first-step analysis
since the start of STATS 325. In this chapter we develop a unified approach
to all these questions using the matrix of transition probabilities, called the
transition matrix.
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8.2 Definitions

The Markov chain is the process Xg, X1, Xo, .. ..

Definition: The state of a Markov chain at time ¢ is the value ofX;.

For example, if X; = 6, we say the process Is in stateat timet.

Definition: The state space of a Markov chain, S, is the set of values that each
X; can take. For example, S = {1,2,3,4,5,6,7}.

Let S have size N (possibly infinite).

Definition: A trajectory of a Markov chain is a particular set of values for
X0, X1, Xo, . . ..

For example, if Xy =1, X; = 5, and Xy = 6, then the trajectory up to time
t=2is1,5,6.

More generally, if we refer to the trajectory sg, s1, o, S3, ..., we mean that
Xo = S0, X1 = 81, Xo = 59, X3 =53, ...

‘Trajectory’ is just a word meaning ‘path’.

Markov Property

The basic property of a Markov chain is that only the most recent point in the
trajectory dfects what happens next.

This is called the Markov Property.
It means that X, depends upoi;, but it does not depend upofy_, ..., X1, Xo.
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We formulate the Markov Property in mathematical notation as follows:

P(Xi1=5|Xe =56, X1 =501,..., X0 =50) = P(Xy11 =5|X; =5,

forall t =1,2,3,... and for all states sg, s1,..., s, s.
Explanation:

P(XtJrl =S ‘ X =8¢, Xi1 =51, s =
/]\ A 7

distribution 0 e
of X1 depends 0
onX, but whatever happened before titne

doesn’t matter.

Definition: Let {Xo, X1, Xo, ...} be a sequence of discrete random variables. Then
{Xo, X1, Xo,...} is a Markov chain if it satisfies the Markov property:

]P(Xtﬂ :S‘Xt:Sta"wXO:SO) = ]P(Xtﬂ :S|Xt:St)7

forallt =1,2,3,... and for all states,, s, ..., s, s.

8.3 The Transition Matrix

We have seen many examples of transition diagrams to describe Markov
chains. The transition diagram is so-called because it shows the transitions
between different states.

0.8

= 0.6 —

Hot Cold

We can also summarize the probabilities X, { Hot < 0.2 0.8 )
in a matrix: Cold 06 04
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The matrix describing the Markov chain is called the transition matrix.
It is the most important tool for analysing Markov chains.

Xt

7\

Transition Matrix

7 N

~— list all states

list insert ~——rows add to 1
X all probabilities  rows add fo 1
states Dij

The transition matrix is usually given the symbol P = (p;;).

In the transition matrix P:

e the ROWS represent NOWbr FROM (X;);
e the COLUMNS represent NEXT, or TOX{,1);

e entry (i, j) Is the CONDITIONAL probability that NEXT= j, given that
NOW = i: the probability of going FROM stateTO state;.

pij =P( X1 =71 Xy =1).

Notes: 1. The transition matrix P must list all possible states in the state space S.

2. P is a square matriz (N x N), because X;,1 and X; both take values in the
same state space S (of size V).

3. The rows of P should each sumto 1:

N

N N
sz'j = Z]P(Xtﬂ =Jj|Xi=1i) = Z]P){Xt:i}(XtJrl =Jj)=1
j=1

J=1 J=1

This simply states that X; .1 must take one of the listed values.

4. The columns of P do not in general sum to 1.
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Definition: Let {Xg, X1, Xo,...} be a Markov chain with state space S, where S
has size N (possibly infinite). The transition probabilities of the Markov
chain are

pij=P(Xp1=j| Xy =4) fori,jes, t=0,1,2,...

Definition: The transition matrix of the Markov chain is P = (p;;).

8.4 Example: setting up the transition matrix

We can create a transition matrix for any of the transition diagrams we have
seen in problems throughout the course. For example, check the matrix below.

q
Example: Tennis game at Deuce.
p VENUS P VENUS
722 ™| AHEAD (A) = WINS (W)

| DEUCE (D)]
VENUS VENUS
R BEHIND (B) g ™ LOSES (L)
D A B W L
D /0 p q¢ 0 0 P
Al ¢ o 0o p 0
Bl p o o 0o g
W 0 0 0 1 0
L 0 0 0 0 1
8.5 Matrix Revision @ col
Notation rowi |-----. a'“
Let A be an N x N matrix.
We write A = (a;;), N by — N

i.e. A comprises elements a;;.

The (7, ) element of A is written both as a;; and (A);;:
e.g. for matrix A% we might write (A42);;.
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Matrix multiplication /\

Let A = (aij) and B = (blj) °

be N x N matrices.
N

The product matrix is A x B = AB, with elements (AB);; = Z airby;.
k=1

Summation notation for a matrix squared

Let A be an N x N matrix. Then

(A% = D (A)i(A)rj = ) airax;.
k=1 k=1

Pre-multiplication of a matrix by a vector

™
Let A be an N x N matrix, and let 7t be an N x 1 column vector: w =

N
We can pre-multiply A by 7”7 to get a 1 x N row vector,
wlA= ((w"A),..., (7" A)y), with elements

N
(WTA)j = Z UNE
1=1

8.6 The t-step transition probabilities

Let { Xy, X1, Xo, ...} be a Markov chain with state space S = {1,2,..., N}.
Recall that the elements of the transition matrix P are defined as:

(P)ij = Pij = ]P(Xl :j‘XO = i) - ]P)(Xn+1 =j|Xn = i) for any n.

pi; is the probability of making a transition FROM state ¢ TO state j in a
SINGLE step.

Question: what is the probability of making a transition from state i to state j
over two steps?  l.e. what isSP(X, = j| Xo=1)?
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We are seeking P(X, = j| Xy =4). Use the Partition Theorem:

P(Xo=j|Xo=1) = P;(Xy=j) (notationofCh 2)

N

= ) Pi(Xy=j| X, =k)Pi(X; =k) (Partition Thm)
k=1
N

= ) P(Xo=j|Xi =k Xo=i)P(X; =k|Xo=1i)
k=1

N
— ZP(X2 =j| X1 =kP(X; =k| Xy =1)
k=1
(Markov Property)

N
= Z pripi  (by definitions)
k=1

N
= ) pup;  (rearranging)
k=1

= (PY);. (see Matrix Revision)

The two-step transition probabilities are therefore given by the matrixP?:

P(Xo=j|Xo=1) =P(Xys2=7| X, =1) = (P?), foranyn.

ij

3-step transitions: We can find P(X3 = j | Xy = i) similarly, but conditioning on
the state at time 2:

N
P(Xs=j|Xo=14) = Y P(Xy=j|Xy=kP(Xy=k|Xo=1)
k=1

N
- Zp’fﬂ' (PQ)ik
k=1

= (P%);;.
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The three-step transition probabilities are therefore given by the matrix P3:

P(X;=7|Xo=1) =P(Xpi3=4| X, =14) = (P?)..

ij for any n.

General case: t-step transitions

The above working extends to show that the ¢-step transition probabilities are
given by the matrix P! for any ¢:

P(X,=j|Xo=1) =P(Xpu=j|Xn=1)= (P, foranyn.

ij

We have proved the following Theorem.

Theorem 8.6: Let { Xy, X1, Xo,...} be a Markov chain with N x N transition
matrix P. Then the ¢-step transition probabilities are given by the matrix P’
That is,

P(X;=j|Xo=1) = (Pt)ij.

It also follows that
P(Xp =7 | Xn =1) = (P") ; for any n. O

)

8.7 Distribution of X;

Let { Xy, X1, Xo, ...} be a Markov chain with state space S = {1,2,..., N}.
Now each X; is a random variable, so it has a probability distribution.
We can write the probability distribution of X; as an N x 1 vector.

For example, consider X,. Let 7t be an N x 1 vector denoting the probability
distribution of Xj:

sl P(XO = 1)
79 P(XO = 2)

TN P(XO = N)
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In the flea model, this corresponds to the flea choosing at random which vertex
it starts d@f from at time 0, such that

P(flea chooses vertexto start = ;.

Notation: we will write Xy ~ 77 to denote that the row vector of probabilities

is given by the row vector 7.

Probability distribution of X

Use the Partition Rule, conditioning on Xj:

N

P(Xy =) = > P(Xi=j|Xo=i)P(Xo =1)

N
= Y pym by definitions

1=1

N
= Zﬂipij
i=1
~ («'P)

(pre-multiplication by a vector from Section 8.5).

e

This shows that P(X; = j) = (ﬂ'TP)j for all j.
The row vector 7! P is therefore the probability distribution of; :

X()NTFT

X1 ~ ﬂ'TP.

Probability distribution of X,

Using the Partition Rule as before, conditioning again on Xj:

N

P(Xy = j) = Z]P(X2 —j| Xo=1)P(Xo=1) = Z (P?),;m = (x"P?)..
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The row vector ! P? is therefore the probability distribution of Xo:

X() ~ 7TT
X1 ~ Tl'TP
X2 ~ 7TTP2

Xt ~ 7TTPt.

These results are summarized in the following Theorem.

Theorem 8.7: Let {Xj, X7, X,...} be a Markov chain with N x N transition
matrix P. If the probability distribution of Xj is given by the 1 x N row vector

7’ then the probability distribution of X; is given by the 1 x N row vector
7wl P!, That is,
Xo~nl = X,~n'P

Note: The distribution of X is X; ~ w! Pt
The distribution of X, ; is Xy 11 ~ 7! P
Taking one step in the Markov chain corresponds to multiplying by P on the
right.

Note: The t-step transition matrix is P* (Theorem 8.6)
The (¢ + 1)-step transition matrix is P!,
Again, taking one step in the Markov chain corresponds to multiplying by P on
the right.

take 1 step...

..multiply by P
on the right
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8.8 Trajectory Probability

Recall that a trajectory is a sequence
of values for Xy, Xq,..., X,

Because of the Markov Property,
we can find the probability of any
trajectory by multiplying together
the starting probability and all
subsequent single-step probabilities.

Example: Let X ~ (%, 0, i, 0,0,0,0). What is the probability of the trajectory
1,2,3 2, 3,47

P(1,2,3,2,3,4) = P(Xo=1) X pia X pag X P32 X P23 X P34
1

Proof in formal notation using the Markov Property:

Let Xy ~ 1. We wish to find the probability of the trajectory sg, s1, S, . . ., 5¢.
P(Xy = so, X1 = s1,..., X = 8¢
= P(Xy =51 Xp1=5t1,...,Xo=150) X P(X3_1 = 5¢-1,..., X0 =50)
= P(X; =51 Xp1=511) x P(Xyo1 =81-1,...,Xo=80) (Markov Property)
= Psy.sP(Xio1 =501 | Xeo = 8129, ..., Xo = 50) X P(X4—2 = s4-9,..., X0 = 50)

= pstflvst X p5t72;5t71 XX p50751 X ]P)(XO = SO)

= pstflvst X p5t72;5t71 XX p50751 X 7-‘-50'
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8.9 Worked Example: distribution of X; and trajectory probabilities

Purpose-flea zooms around

the vertices of the transition 0.9 2
diagram opposite. Let X; be — % ' 0.6
Purpose-flea’s state at time ¢ . 0.4 &
(t=0,1,...).
1 | 3
(0

0.6 0.2

(a) Find the transition matrix, P.

0.6 0.2 0.2
Answer:P=1| 04 0 0.6
0 0.8 0.2

0.6 0.2 0.2 - - 0.2

P(X,=3|Xg=1)= (P, = S .- 06
0.2

= 06x02+02x06+0.2x0.2
= (.28.

Note: we only need one element of the matP so don’t lose exam time by
finding the whole matrix.

(c) Suppose that Purpose-flea is equally likely to start on any vertex at time 0.
Find the probability distribution of Xj.

From this info, the distribution oK, isw" = (3,3,3). We needX; ~ =’ P.

11 0.6 0.2 0.2

(3 3 3)
P = 04 0 0.6
0 08 0.2

L=
I
—
Wl
Wl
Wl
~—

ThusX; ~ (3, 3,3) and thereforeX, is also equally likely to be 1, 2, or 3.
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(d) Suppose that Purpose-flea begins at vertex 1 at time 0. Find the probability
distribution of Xs.
The distribution ofX, is nown™ = (1,0,0). We needX, ~ w’ P2,

(1 0 0) 0.6 0.2 0.2 0.6 0.2 0.2
P = 04 0 0.6 0.4 0 0.6
0 0.8 0.2 0 08 0.2

= 04 0 0.6

0 0.8 0.2

— (044 0.28 0.28).

Thus P(X,=1)=0.44, P(X, =2) =0.28, P(X, = 3) = 0.28.

Note that it is quickest to multiply the vector by the matrisfi we don’t need to
computeP? in entirety.

(e) Suppose that Purpose-flea is equally likely to start on any vertex at time 0.
Find the probability of obtaining the trajectory (3, 2, 1, 1, 3).
]P(?), 2, 1, 1, 3) = P(Xo = 3) X P32 X P21 X P11 X P13 (SeCtion 88)
= 3 x0.8x0.4x0.6x0.2
= 0.0128.
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8.10 Class Structure

The state space of a Markov chain can be partitioned into a set of non-overlapping
communicating classes.

States ¢« and j are in the same communicating class if there is some way of
getting from state ¢ to state j, AND there is some way of getting from state j
to state ¢. It needn’t be possible to get between ¢ and j in a single step, but it
must be possible over some number of steps to travel between them both ways.

We write 7 < J.

Definition: Consider a Markov chain with state space S and transition matrix P,
and consider states ¢, j € S. Then state ¢ communicates with state 3 if:

1. there exists some ¢ such that (P');; > 0, AND
2. there exists some u such that (P*);; > 0.

Mathematically, it is easy to show that the communicating relation <> is an
equivalence relation, which means that it partitions the sample space S into
non-overlapping equivalence classes.

Definition: States i and j are in the same communicating class if i <> j: i.e. if
each state is accessible from the other.

Every state is a member of exactly one communicating class.

Example: Find the communicating /@\

classes associated with the

transition diagram shown. (/‘ \ T @ @
Solution: @
{1,2,3}, {4,5}.

State 2 leads to state 4, but state 4 does not lead back t@2stswethey are in
different communicating classes.
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Definition: A communicating class of states is closed if it is not possible to leave
that class.

That is, the communicating class C' is closed if p;; = 0 whenever ¢« € C and
jé¢C.
Example: In the transition diagram above:
e Class {1,2,3} is notclosed: it is possible to escape to cl§s$s>}.

e Class {4,5} is closed: it is not possible to escape.

Definition: A state i is said to be absorbing; if the sef{i} is a closed class.

9

Definition: A Markov chain or transition matrix P is said to be irreducible if
i «» j foralli,j € S. Thatis, the chain is irreducible if the state sp&ce a
single communicating class.

8.11 Hitting Probabilities

We have been calculating hitting
probabilities for Markov chains
since Chapter 2, using First-Step
Analysis. The hitting probability
describes the probability that the
Markov chain will ever reach some
state or set of states.

In this section we show how hitting
probabilities can be written in a
single vector. We also see a general
formula for calculating the hitting
probabilities. In general it is easier

to continue using our own common
sense, but occasionally the formula
becomes more necessary.
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Vector of hitting probabilities

Let A be some subset of the state space S. (A need not be a communicating
class: it can be any subset required, including the subset consisting of a single
state: e.g. A ={4}.)

The hitting probability from state i to set A is the probability of ever reach-
ing the set A, starting from initial state . We write this probability as h;4.
Thus

hia =P(X; € A for somet > 0| Xy = 1i).

Example: Let set A= {1,3} as shown. .
. ey . ,',I s AN . 1
The hitting probability for set A is: k@\T @H@

e 1 starting from states 1 or 3 @ "éet A
(We are starting in set A, so we hit it immediately); -

e O starting from states 4 or 5
(The set {4,5} is a closed class, so we can never escape out to set A);

e 0.3 starting from state 2
(We could hit A at the first step (probability 0.3), but otherwise we move to
state 4 and get stuck in the closed class {4,5} (probability 0.7).)

We can summarize all the information from the example above in a vector of

hitting probabilities: hia 1
haa 0.3

ha=| hsa [=] 1

haa 0

his 4 0

Note: When A is a closed class, the hitting probability h;4 is called the absorption
probability.
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In general, if there are N possible states, the vector of hitting probabilities is

hia P(hit A starting from state)1

h hoa P(hit A starting from state 2
A — . — .

ha P(hit A starting from statéV)

Example: finding the hitting probability vector using First-Step Analysis

Suppose {X; : t > 0} has the following transition diagram:

1/2 1/2

SONONONOS
1/2 1/2

Find the vector of hitting probabilities for state 4.

Solution:

Leth;y = P(hit state 4, starting from state Clearly,

hiy = 0
hy = 1

Using first-step analysis, we also have:
hos = 3has+1 %0
hay = % + %h24
Solving,
has =343 (3hss) = hau=32  Soalso,hy = thy = 1.
So the vector of hitting probabillities is

h’A: (07 %7 %7 1)
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Formula for hitting probabilities

In the previous example, we used our common sense to state that hyy = 0.
While this is easy for a human brain, it is harder to explain a general rule that
would describe this ‘common sense’ mathematically, or that could be used to
write computer code that will work for all problems.

Although it is usually best to continue to use common sense when solving
problems, this section provides a general formula that will always work to find
a vector of hitting probabilities h 4.

Theorem 8.11: The vector of hitting probabilities hy = (h;sa : @ € 5) is the
minimal non-negative solution to the following equations:

1 for 1€ A,
hin =4 N pyhja for Q¢ A.

jes

The ‘minimal non-negative solution” means that:

1. the values {h;4} collectively satisfy the equations above;

2. each value h;4 is > 0 (non-negative);

3. given any other non-negative solution to the equations above, say {g;4}
where g;4 > 0 for all 4, then h;4 < g;4 for all i (minimal solution).

Example: How would this formula be used to substitute for ‘common sense’ in

the previous example? 12 1/2
The equations give: 1C(1) 9‘9 (41
1 if i=4, 12 1/2
jes
Thus, h = 1

hiy = hyy unspecified! Could be anything!
hoy = %h14+ %h34
hss = ghos+ 5has = Shoa + 3
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Becauseéh, could be anything, we have to use the minimal non-negatiiteeya
which ishy, = 0.
(Need to check, = 0 does not forceé,;, < 0 for any other: OK.)

The other equations can then be solved to give the same aawbefore. [

Proof of Theorem 8.11 (non-examinable):

Consider the equations h;jy = { ! for @ €4, (%)
ZjESpijth for 1 ¢ A.
We need to show that:
(i) the hitting probabilities {h;4} collectively satisfy the equations (%);

(ii) if {gia} is any other non-negative solution to (x), then the hitting proba-
bilities {h;4} satisfy h;4 < g;4 for all ¢ (minimal solution).

Proof of (i): Clearly, h;4 = 1 if i € A (as the chain hits A immediately).

Suppose that i ¢ A. Then
hia = P(X; € A for somet > 1|X,=1)

= Z]P’(Xt € Aforsomet>1|X; =7)P(X; =7]|Xy)=1)
jes
(Partition Rule)
= Z hjapij (by definitions).
jes

Thus the hitting probabilities {h;4} must satisfy the equations (x).

Proof of (ii): Let hg = P(hit A at or before time t| Xy = ).

We use mathematical induction to show that hg < g;4 for all t, and therefore
hia = limy_, hl(-iz must also be < g;4.
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1 it e A,
Time ¢ = O: hggl) = o
0 if ¢ A

_ _ . gia=1 if i € A,
But because g¢;4 is non-negative and satisfies (%), ,
gia > 0 for all 7.

So gia > h\") for all i.

The inductive hypothesis is true for time ¢t = 0.

Time ¢: Suppose the inductive hypothesis holds for time ¢, i.e.

Consid h;?l < gja forall j.
onsider

R = P(hit A by time ¢ + 1] Xo = 4)

= ) P(hit A by time ¢+ 1| X; = j)P(X; = j | Xy = i)
jes
(Partition Rule)
= Z hgtf)l Dij by definitions

jes

IA

Z 9 A Dij by inductive hypothesis
jes

= gia  because {gia} satisfies (%).

Thus hgi;rl) < gia for all 7, so the inductive hypothesis is proved.

By the Continuity Theorem (Chapter 2), h;j4 = lim; hg.

So hia < g;4 as required. ]
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8.12 Expected hitting times

In the previous section we found
the probability of hitting set A,
starting at state ¢. Now we study
how long it takes to get from ¢
to A. As before, it is best to solve
problems using first-step analysis

and common sense. However, a
general formula is also available.

Definition: Let A be a subset of the state space S. The hitting time of A is the
random variable T4, where

Ty=min{t >0: X, € A}.
T4 is the time taken before hitting set A for the first time.

The hitting time T4 can take values 0,1, 2, ..., andcc.
If the chain never hits set A, then Ty = oc.

Note: The hitting time is also called the reaching time. If A is a closed class, it
is also called the absorption time.

Definition: The mean hitting time for A, starting from state 1, is

m;A — E(TAlXO = Z)

Note: 1If there is any possibility that the chain never reaches A, starting from ¢,
.e. if the hitting probabilityh;y < 1, then E(T | Xy = i) = oo.

Calculating the mean hitting times

Theorem 8.12: The vector of expected hitting times my = (m;4 : i € 5) is the
minimal non-negative solution to the following equations:

0 for ie A,

miA = - Zp,-jmjA for ¢ A.
JEA
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Proof (sketch):

(%)

Consider the equations m;4 =

0 for 1€ A,
{ L+ > ieapiymja for i ¢ A
We need to show that:
(i) the mean hitting times {m;4} collectively satisfy the equations (x);
(ii) if {u;4} is any other non-negative solution to (%), then the mean hitting

times {m;a} satisfy m;a < u;a for all ¢ (minimal solution).

We will prove point (i) only. A proof of (ii) can be found online at:
http://www.statslab.cam.ac.uk/~james/Markov/ , Section 1.3.

Proof of (i): Clearly, m;s = 0if i € A (as the chain hits A immediately).
Suppose that i ¢ A. Then

m;a =— E(TA ‘ X() = Z)

— 14 STR(T | X0 = j)P(X) = | Xo = i)
jes
(conditional expectation: take 1 step to get to state j
at time 1, then find E(7) from there)

= 1+ Z M A Dij (by definitions)
jes

= 1+ZpijmjA, because m;4 = 0 for j € A.
j¢A

Thus the mean hitting times {m;4} must satisfy the equations (x).

Example: Let {X; : t > 0} have the same transition diagram as before:

/2 1)2

1
Starting from state 2, find the 1C te Ql

expected time to absorption. /2 1)2
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Solution:

Starting from staté = 2, we wish to find the expected time to reach the set
A ={1,4} (the set of absorbing states).

Thus we are looking foin; 4 = ms 4.

0 if ie{l,4},
JjgA
/2 1/2
hus, @ @ ® o
mia = 0 (becausa € A) 2 12

mya = 0 (becausd € A)

1 1
mea = 1+ 35myia+ 5msa
_ 1
= mea = l+35m3a
— 141 1
mga = L1+ 3maoa + 5M4a
= 1+1im
— 511024

= 143 (14 $msa)

3 3

= ngA = )

= m3q = 2.
Thus,

mMoyg = 1+§m314:2

The expected time to absorption is theref@(&,) = 2 steps.
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moves to one of the other two vertices at random. What is -
the expected time taken for Glee-flea to get from vertex 1

Example: Glee-flea hops around on a triangle. At each step he %
to vertex 27 =

Solution:

transition matrix, P =

= o= O
o= O N
O NI N

We wish to findms.

0 if i=2,
Now mjs =14 14 Zpijmjg if i%#2.
j#2
Thus
may = 0
mis = 1+ %mgg + %m32 = 1+ %m32‘
mgs = 1+ %m22 + %mu
= 1+ %mm
= 143 (14 3ms)
= mz = 2.

Thus mys = 1+ tmg, = 2 steps.



Chapter 9: Equilibrium

In Chapter 8, we saw that if {Xy, X1, Xo,...} is
a Markov chain with transition matrix P, then
X;~nl = X, ~nlP

This raises the question: is there any distribution 7 such that 7w’/ P = «7?

If 77 P =x", then

X,~7ml = Xiy1 ~ n'pP=mn"
=  Xpon~ al'pP=nx"
= Xys~nlP=mn"
=

In other words, if #” P = T, and X; ~ w”, then
X~ Xppr~ Xppo ~ Xypg~ oo

Thus, once a Markov chain has reached a distribution 7”7 such that 77 P = =7,
it will stay there.

If 7P = 7T, we say that the distribution 77 is an equilibrium distribution.

Equilibrium means a level position: there is no more change in the distri-
bution of X; as we wander through the Markov chain.

Note: Equilibrium does not mean that the value of X;,; equals the value of X;.
It means that the distribution of X;,; is the same as the distribution of X;:

e.g.IP’(XtH = 1) == ]P(Xt = 1) — 7Tl;

P(Xy1=2)=P(X;=2)=m, etc.

In this chapter, we will first see how to calculate the equilibrium distribution 7w” .

We will then see the remarkable result that many Markov chains automatically
find their own way to an equilibrium distribution as the chain wanders through
time. This happens for many Markov chains, but not all. We will see the
conditions required for the chain to find its way to an equilibrium distribution.
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9.1 Equilibrium distribution in pictures

Consider the following 4-state Markov chain: 05
0.0 0.9 0.1 0.0 0-10 ' Qo.
0.8 0.1 0.0 0.1

0.0 0.5 0.3 0.2 '
0.1 0.0 0.0 0.9

(4%

pP—

Suppose we start at time 0 with
X ~ ( 1 l): so the chain is equally

1°7°4°14
likely to start from any of the four states. Here
are pictures of the distributions of Xy, Xq,..., X4: U 0.9

PXg=2) PXi=2) PXy=2) PXs=2) PX;=1)

0.4
0.4
4

0.3

0.2

0.1

0.0 0.1 0.2 0.3
0 0.1 0.2 0.3

0.0

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

The distribution starts off level, but quickly changes: for example the chain is
least likely to be found in state 3. The distribution of X; changes between each
t=0,1,2,3,4. Now look at the distribution of X; 500 steps into the future:

P(X500 = 113) P<X501 = 33) P(X502 = 1}) IP)(X503 = QZ‘ ]P)(X504 = fL’

< < < = =
o =] S [S] [S]

o o S o S
N N N N N
o <] S <] S
bl bl bl < bl
o =] S [S] [S]

o o o o o
S) S S S S
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

The distribution has reached a steady state: it does not change between
t = 500,501,...,504. The chain has reached equilibrium of its own accord.
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9.2 Calculating equilibrium distributions

Definition: Let {Xy, X1, ...} be a Markov chain with transition matrix P and state
space S, where |S| = N (possibly infinite). Let w7 be a row vector denoting
a probability distribution on S: so each element 7; denotes the probability
of being in state ¢, and Zf\il m; = 1, where m; > 0 for all . = 1,..., N. The
probability distribution 7w’ is an equilibrium distribution for the Markov chain
if 7P =nT,

That is, 7! is an equilibrium distribution if

N
(Tl'TP)j:ZT('ipij:’ﬂ'j fora”jzl,...,N.
1=1

By the argument given on page 174, we have the following Theorem:

Theorem 9.2: Let { X, X, ...} be a Markov chain with transition matrix P. Sup-
pose that 7w’ is an equilibrium distribution for the chain. If X; ~ 7’ for any ¢,
then X, ~ «! forallr > 0. O

Once a chain has hit an equilibrium distribution, it stays there for ever.

Note: There are several other names for an equilibrium distribution. If w7 is an
equilibrium distribution, it is also called:

e invariant: it doesn’t changex™ P = =’
e stationary: the chain ‘stops’ here.

Stationarity: the Chain Station

a train station is where a train stops

a workstation is where . . . ? ? ?

a stationary distribution is where a Markov chain stops
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9.3 Finding an equilibrium distribution

T

Vector 7' is an equilibrium distribution for P if:

1. wfp=xn';
2. YN i =1;
3. m; >0 foralli.

Conditions 2 and 3 ensure that ! is a genuine probability distribution.

Condition 1 means that 7r is a row eigenvector of P.

Solving w7 P = «” by itself will just specify 7 up to a scalar multiple.
We need to include Condition 2 to scale 7t to a genuine probability distribution,
and then check with Condition 3 that the scaled distribution is valid.

Example: Find an equilibrium distribution for the Markov chain below.

0.5
0.0 0.9 0.1 0.0 0-10 P Qo.z
3

0.8 0.1 0.0 0.1 2
0.0 0.5 0.3 0.2
0.1 0.0 0.0 0.9

Solution:

Letn? = (my, my, 73, m4).
The equations are” P =« andr, + m + m3 + 74 = 1.
0.0 0.9 0.1 0.0

Tp o ( ) 0.8 0.1 0.0 0.1 ( )

v =TT T Tro T TI. — \7T1 TTo T3 T

PR 00 05 03 0.2 b

0.1 0.0 0.0 0.9



8mo 4 .1my
9m + 1wy + .53
Am + .3ms
Amy + 2m3 + .91y

Also T+ Mo + T3 + Ty

(3) = m
Substitute in (2) = .9(Tw3) + .53

= T

: . 68
Substitute in (1) = .8 <§7r3) +.1my

= Ty

Substitute all in (5) = 3 <7 + %—8 +14 89—6)

= T3

Overall:

T 63 68 9 86
v =
2267 2267 2267 226

= (0.28, 0.30, 0.04, 0.38).

EER)
-
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1
T2

(1)
(2)
T (3)
(4)
(5)

226

This is the distribution the chain converged to in Section 9.1.



9.4 Long-term behaviour o 05

In Section 9.1, we saw an example where the Markov
chain wandered of its own accord into its equilibrium
distribution:

]P)(Xg)oo = ZC) P(Xg,m = CC) P(X502 = LU) ]P)(X503 = x)

< s
(<] o

0.1

0.1
U 0.9
<
o

0.4

s
S

0.3

(<] <] [S) [S]

0.2

N N N
o (=} o

0.1

hal bl d
(<] <] o <]

Q Q
[S) [S)

0.0

=]
[S)

0.0

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

This will always happen for this Markov chain. In fact, the distribution it
converges to (found above) does not depend upon the starting conditions: for
ANY value of X,,, we will always haveX; ~ (0.28, 0.30, 0.04, 0.38) ast — cc.

What is happening here is that each row of the transition matrik' converges
to the equilibrium distribution0.28, 0.30, 0.04, 0.38) ast — oo:

0.0 0.9 0.1 0.0 0.28 0.30 0.04 0.38

p_ 0.8 0.1 0.0 0.1 . pt 0.28 0.30 0.04 0.38 as £ — 00
0.0 0.5 0.3 0.2 0.28 0.30 0.04 0.38 '
0.1 0.0 0.0 0.9 0.28 0.30 0.04 0.38

(If you have a calculator that can handle matrices, try finding P! for ¢ = 20
and ¢t = 30: you will find the matrix is already converging as above.)

This convergence of P’ means that for larget, no matter WHICH state we start
in, we always have probability

e about 0.28 of being in State 1 after ¢ steps;

e about 0.30 of being in State 2 after ¢ steps;

e about 0.04 of being in State 3 after ¢ steps;

e about 0.38 of being in State 4 after ¢ steps.
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Start at Xy = 2 Start at Xy =4

0.8
e
0.8

0.6
0.6

P(X, = k| Xo)
P(X, = k| Xo)

State 4 State 4
I State 2 State 2
II ’ State 1 fﬁw State 1
M'w
S State 3 o] & State 3
6 26 4‘0 66 86 160 0 20 4‘0 66 86 160
time, t time, ¢

The left graph shows the probability of getting from state 2 to state k in t
steps, as t changes: (P')yy, for k =1,2,3, 4.

The right graph shows the probability of getting from state 4 to state k in t
steps, as t changes: (P')yy, for k =1,2,3, 4.

The 2nitial behaviour differs greatly for the different start states.
The long-term behaviour (large t) is the same for both start states.

However, this does not always happen. Consider the two-state chain below:
N 01
P =
@f@ ( 10 )

As t gets large, P! does not converge:

10 01 10 01
500 _ 501 _ 502 _ 503 _
= (oh) rme(ia) e=(on) 7= (V0) -

For this Markov chain, we never ‘forget’ the initial start state.
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General formula for P!

We have seen that we are interested in whether P! converges to a fixed matrix
with all rows equal as — .

If it does, then the Markov chain will reach an equilibrium distribution that does
not depend upon the starting conditions.

The equilibrium distribution is then given by any row of the converge#t'.

It can be shown that a general formula is available for P! for any ¢, based on
the eigenvalues of P. Producing this formula is beyond the scope of this course,
but if you are given the formula, you should be able to recognise whether P! is
going to converge to a fixed matrix with all rows the same.

Example 1:
0.8
0.2 0.8
é—% 0.2 C@ - (@D 0.4 PZ( 0.6 0.4 )

We can show that the general solution for P! is:

1 3 4 4 -4
t_ = . t
Peatla a) (s ) o)
Ast — oo, (—0.4)" — 0, so
1/ 3 4
t — =
P %7<3 4) (

This Markov chain will therefore converge to the equilibniwlistributionm” =
(2,1) ast — oo, regardless of whether the flea starts in state 1 or state 2.

=l ~Jlw
T I

Ezercise: Verify that w7 = (%, %) is the same as the result you obtain from solving
the equilibrium equations: 77 P = ! and m + m = 1.
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Example 2: Purposeflea knows exactly what he is doing, so his probabilities are
all 1:

A O — P (90)

We can show that the general solution for P? is:

Pl ) (e ) e

Ast — oo, (—1)" does not converge to 0, so

Pt:<(1) ?) if t is even

;[0 1 L
P_< | O) if t is odd
for all t.

In this exampleP! never converges to a matrix with both rows identical gets
large. The chain never ‘forgets’ its starting condition$ as oc.

Exercise: Verity that this Markov chain does have an equilibrium distribution,

nl = (l l). However, the chain does not converge to this distribution as

272
t — o0.

These examples show that some Markov chains forget their starting conditions
in the long term, and ensure that X; will have the same distribution as t — oo
regardless of where we started at X,. However, for other Markov chains, the
initial conditions are never forgotten. In the next sections we look for general
criteria that will ensure the chain converges.



THE UNIVERSITY
OF AUCKLAND

NEW ZEALAND
Te Whare Wananga o Tamaki Makaurau 1 8 3

Target Result:

e If a Markov chain is #rreducible and aperiodic, and if an equilibrium
distribution w7 exists, then the chain converges to this distribution as

t — oo, regardless of the initial starting states.

To make sense of this, we need to revise the concept of irreductbility, and
introduce the idea of aperiodicity.

9.5 Irreducibility

Recall from Chapter 8:

Definition: A Markov chain or transition matrix P is said to be irreducible if
i «» j foralli,j € S. Thatis, the chain is irreducible if the state sp&ce a
single communicating class.

An irreducible Markov chain consists of a single class.

m
/@\ DS
B %) (5 ~—=(4)
Irreducible Not irreducible

Irreducibility of a Markov chain is important for convergence to equilibrium as
t — oo, because we want the convergence to be independent of start state.

This can happen if the chain is irreducible. When the chain is not irreducible,
different start states might cause the chain to get stuck in different closed
classes. In the example above, a start state of Xy = 1 means that the chain is
restricted to states 1 and 2 as t — oo, whereas a start state of Xy = 4 means
that the chain is restricted to states 4 and 5 as t — oo. A single convergence
that ‘forgets’ the initial state is therefore not possible.
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9.6 Periodicity

Consider the Markov chain with transition matrix P = < ? (1) ) )

1
= ’ !H @) @ Suppose that X, = 1.
1

Then X; = 1 for all even values of, andX; = 2 for all odd values of.

This sort of behaviour is called periodicity: the Markov chain can only return
to a state at particular valuestof

Clearly, periodicity of the chain will interfere with convergence to an equilibrium
distribution as ¢ — oo. For example,

1 for even values of t,

PX;=1|Xo=1)=
0 for odd values of ¢.

Therefore, the probability can not converge to any single value as t — oo.

Period of state 2

To formalize the notion of periodicity, we define the period of a state 1.
Intuitively, the period is defined so that the time taken to get from sta&ek to
State; again is always a multiple of the period.

In the example above, the chain can return to state 1 after 2 steps, 4 steps, 6
steps, 8 steps, . ..

The period of state 1 is therefore 2.

In general, the chain can return from state ¢ back to state ¢ again in t steps if
(P"),; > 0. This prompts the following definition.
Definition: The period d(i) of a state ¢ is
d(i) = ged{t : (P"). > 0},

the greatest common divisor of the times at which return ssyie.
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Definition: The state 7 is said to be periodic if d(i) > 1.

For a periodic state 7, (P'),, = 0 if ¢ is not a multiple of d(i).

Definition: The state ¢ is said to be aperiodic if d(i) = 1.

If state 7 is aperiodic, it means that return to stateis not limited only to regularly
repeating times.

For convergence to equilibrium as ¢t — oo, we will be interested only in aperiodic
states.

The following examples show how to calculate the period for both aperiodic
and periodic states.

Examples: Find the periods of the given states in the following Markov chains,
and state whether or not the chain is irreducible.

1. The simple random walk.
p p p p p
l=p 1-=p 1-=p 1-p 1-p

d(0) = ged{2,4,6,...} = 2.

Chain is irreducible.
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d(1) = ged{2,3,4,...} = 1.

Chain is irreducible.

R —
%—

T l T l d(1) = ged{2,4,6,...} = 2.

@_> @ Chain is irreducible.

d(1) = ged{2,4,6,...} = 2.
Chain is NOT irreducible (i.e. Reducible).

offojos

d(1) = ged{2,4,5,6,...} = 1.

Chain is irreducible.

Q& Ge

186
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9.7 Convergence to Equilibrium

We now draw together the threads of the previous sections with the following
results.

Fact: If i <» j, then ¢ and j have the same period. (Proof omitted.)

This leads immediately to the following result:

If a Markov chain is #rreducible and has one aperiodic state,
then all states are aperiodic.

We can therefore talk about an irreducible, aperiodic chain, meaning that
all states are aperiodic.

Theorem 9.7: Let {Xy, X,...} be an irreducible and aperiodic Markov chain
with transition matrix P. Suppose that there exists an equilibrium distribution

7. Then, from any starting state i, and for any end state j,
P(X;=j|Xo=1) =7 ast— oc.

In particular,
(P’f)ij — m; ast — oo, foralli andj,

So P! converges to a matrix with all rows identical and equatto O]

For an irreducible, aperiodic Markov chain,

with finite or infinite state space,
the existencef an equilibrium distributior” ensures

that the Markov chain will convergie n' ast — oo.
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Note: If the state space is infinite, it is not guaranteed that an equilibrium distri-
bution 77 exists. See Example 3 below.

Note: If the chain converges to an equilibrium distribution 7”7 as t — oo, then the
long-run proportion of time spent in statas .

9.8 Examples

A typical exam question gives you a Markov chain on a finite state space and
asks if it converges to an equilibrium distribution as ¢ — co. An equilibrium
distribution will always exist for a finite state space. You need to check whether
the chain is irreducible and aperiodic. If so, it will converge to equilibrium.
If the chain is irreducible but periodic, it cannot converge to an equilibrium
distribution that is independent of start state. If the chain is reducible, it may
or may not converge.

The first two examples are the same as the ones given in Section 9.4.

Example 1: State whether the Markov chain below converges to an equilibrium
distribution as t — oo.

0.8
0.2 0.8
=05 o1)

—

The chain is irreducible and aperiodic, and an equilibriustridpution will exist
for a finite state space. So the chain does converge.

(From Section 9.4, the chain convergesrto= (2,2) ast — ~.)
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Example 2: State whether the Markov chain below converges to an equilibrium
distribution as t — oo.

A O — P (90)

The chain is irreducible, but it is NOT aperiodic: perie@.

Thus the chain does NOT converge to an equilibrium distiGuast — oo.

It is important to check for aperiodicity, because the existence of an equilibrium
distribution does NOT ensure convergence to this distribution if the matrix is
not aperiodic.

Example 3: Random walk with retaining barrier at 0.

p p P D

JCONONONONO
\_/

¢ 7 d a  q

Find whether the chain converges to equilibrium as ¢ — oo, and if so, find the
equilibrium distribution.

The chain is irreducible and aperiodic, saaif equilibrium distribution exists,
then the chain will converge to this distributiontas> ~c.

However, the chain has an infinite state space, so we canaoarmgfee that an
equilibrium distribution exists.

Try to solve the equilibrium equations:
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' P =zl andy 2 m = 1.

qmy +qm = ™o (%)

00
Z ](; » 0 pmo +qm2 = T
P = 0¢g 0 p P71 +qT3 = T2

prp_1+qmp, = m for k=12 ...

From (), we haverry = g,

SO m = ]—)7'('0
q

1 1 /p D
=my = —(m —pmy) = — (—7T() —pﬂo) ==
q qa \q q

k
We suspect that, = <§> mo. Prove by induction.

k
The hypothesis is true far= 0, 1,2. Suppose that; = <‘§) 7. Then

1
Thel = 5(7%—197%1)

k
The inductive hypothesis holds, sp= (g) mo for all k > 0.
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00 00 k
We now need Zmzl, ie. 7T02<]—9) = 1.
q
k=0

1=0

The sum is a Geometric series, and converges on&do& 1. Thus whem < q,
q

1
7'('()(1 p)l = 70:1—]—9.

If p > q, there is no equilibrium distribution.

we have

Solution:

If p < q, the chain converges to an equilibrium distributlen wherer, =

(1—5) (g)k fork=0,1,...

If p > q, the chain does not converge to an equilibrium distribuéish— oc.

FExample j: Sketch of Exam Question 2006.

Consider a Markov chain with transition diagram: (O
: L. 4
(a) Identify all communicating classes.
For each class, state whether or not T
it is closed.
2 |« 1 > 3
Classes are: C :)

{1}, {2}, {3} (each not closed); U
{4} (closed).

(b) State whether the Markov chain is
irreducible, and whether or not all states are
aperiodic.

Not irreducible: there are 4 classes.
All states are aperiodic.

(c) The equilibrium distribution is w7 = (0,0,0,1). Does the Markov chain
converge to this distribution as ¢ — oo, regardless of its start state?

Yes, it clearly will converge ta’ = (0,0, 0, 1), despite failure of irreducibility.
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Note: Equilibrium results also exist for chains that are not aperiodic. Also, states

9.9

can be classified as transient (return to the state is not certain), null recurrent

(return to the state is certain, but the expected return time is infinite), and
positive recurrent (return to the state is certain, and the expected return
time is finite). For each type of state, the long-term behaviour is known:

e If the state k is transient or null-recurrent,

P(X; =k|Xo=k) = (P'),, = 0ast— oco.

e If the state is positive recurrent, then

P(X;=Fk|Xo=k) = (Pt)kk — 7 as t — oo, where 7, > 0.

The expected return time for the state is 1 /7.

A detailed treatment is available at
http://www.statslab.cam.ac.uk/” james/Markov/.

Special Process: the Two-Armed Bandit

A well-known problem in probability is called the two-armed
bandit problem. The name is a reference to a type of gambling
machine called the two-armed bandit. The two arms of the
two-armed bandit offer different rewards, and the gambler

has to decide which arm to play without knowing which

is the better arm.

A similar problem arises when doctors are experimenting with
two different treatments, without knowing which one is better. — One-armed bandit
Call the treatments A and B. One of them is likely to be better, but we don’t
know which one. A series of patients will each be given one of the treatments.
We aim to find a strategy that ensures that as many as possible of the patients
are given the better treatment — though we don’t know which one this is.

Suppose that, for any patient, treatment A has P(success) = «, and treatment
B has P(success) = (3, and all patients are independent. Assume that 0 < o < 1
and 0 < 0 < 1.
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First let’s look at a simple strategy the doctors might use:

e The random strategy for allocating patients to treatments A and B is
to choose from the two treatments at random, each with probability 0.5,
for each patient.

e Let pr be the overall probability of success for each patient with the
random strategy. Show that pg = L (o + f3).

The two-armed bandit strategy is more clever. For the first patient, we
choose treatment A or B at random (probability 0.5 each). If patient n is given
treatment A and it is successful, then we use treatment A again for patient n—+1,
forallm =1,2,3,.... If A is a failure for patient n, we switch to treatment B
for patient n + 1. A similar rule is applied if patient n is given treatment B: if
it is successful, we keep B for patient n+ 1; if it fails, we switch to A for patient
n—+ 1.

Define the two-armed bandit process to be a Markov chain with state space
{(A,S), (A, F),(B,S), (B, F)}, where (A,S) means that patient n is given
treatment A and it is successful, and so on.

Transition diagram:

Exercise: Draw on the missing arrows and find their probabilities in terms of
a and f.

(A,S) (B,F)

(A,F) (B,S)

Transition matrix:
AS AF BS BF

AS
AF
BS
BF
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Probability of success under the two-armed bandit strategy

Define pr to be the long-run probability of success using the two-armed bandit
strategy.

Exercise: Find the equilibrium distribution 7r for the two-armed bandit pro-
cess. Hence show that the long-run probability of success for each patient under
this strategy is:

_a+f—2ap
pr = 2—a—g

Which strategy is better?

Exercise: Prove that pr — pr > 0 always, regardless of the values of o and f.

This proves that the two-armed bandit strategy is always better than, or equal
to, the random strategy. It shows that we have been able to construct a strategy
that gives all patients an increased chance of success, even though we don’t know
which treatment is better!

P(success) for different 3 when a=0.7
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The graph shows the probability of success under the two different strategies,
for o« = 0.7 and for 0 < 8 < 1. Notice how pp > pp for all possible values of .




