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Questions:

1. Show that (∞, z1, z2, z3) = z1−z3
z1−z2 .

2. Find a Möbius transformation sending 0, i,−1 to −i, 1, 0 respectively.

3. Find all Möbius transformations with �xed points i and −i.

4. Using Fundamental Theorem of Möbius geometry, show that all clines are congruent in
Möbius geometry.

5. Let z be a point inside the circle C : |z − a| = R. Suppose that p, q be the two distinct
points on the C such that the line segment pq passing through z and is perpendicular to
az. Show that the tangents to C at p and q meet at z∗ (symmetric point of z wrt C).

Solutions:

1. (∞, z1, z2, z3) = ∞−z2
∞−z3

z1−z3
z1−z2 = z1−z3

z1−z2 .

2. Let Tz = az+b
cz+d

be a Möbius transformation sending (0, i,−1) to (−i, 1, 0). So we have

T (0) = b
d
= −i, T (i) = ai+b

ci+d
= 1, T (−1) = −a+b

−c+d
= 0.

Solving b = −id, ai+ b = ci+ d, −a+ b = 0, we get b = a, d = ia, c = −ia.
So we get T (z) = z+1

−iz+i
, which indeed sends (0, i,−1) to (−i, 1, 0).

3. We will provide two solutions. The �rst one is the quick and obvious way: Plug all the
numbers in and solve for a, b, c, d. The second one is slower, and produces a messier an-
swer, but gives some geometric insights.

Solution 1:
Let T (z) = az+b

cz+d
(ad− bc 6= 0) be a Möbius transformation.

T has �xed points i,−i
⇔ i = ai+b

ci+d
and −i = −ai+b

−ci+d

⇔ −c+ di = ai+ b and −c− di = −ai+ b
⇔ a = d and b = −c (by Gaussian elimination or whatever algebraic methods)
So the general form of Möbius transformations with �xed points i and −i is T (z) = az+b

−bz+a

(a2 + b2 6= 0)

WARNING: This warning is about logic. It is important that two conditions connected
by a⇔ are actually equivalent. If you simply add −c+di = ai+ b and −c−di = −ai+ b
together to get 2ai = 2di and then proceed to the next step, instead of �nding an equiva-

lent condition like

{
2ai = 2di

−2c = 2b
, then you may end up with some fake answers, i.e. some

Möbius transformations in your �nal answer may not actually have both i,−i as �xed
points. If you don't understand why does that happen, try to think why do we get a fake
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solution �x=-2" if we try to solve the equation �x+1=1" in the following way:

x+ 1 = 1

(x+ 1)2 = 12

x2 + 2x+ 1 = 1

x(x+ 2) = 0

x = 0 or x = −2

Solution 2:
We know that Möbius transformations that �x 0 and ∞ are in the form T (z) = λz for
some non-zero complex number λ. It would be nice if we can pretend that the two points
we're trying to �x are 0,∞. It can be done by moving i,−i to 0,∞.
Let S(z) = z−i

z+i
(a Möbius transformation that moves i,−i to 0,∞)

Consider the commutative diagram

Ĉ Ĉ

Ĉ Ĉ

T

S S

R

T �xes i,−i if and only if R �xes 0,∞. So a Möbius transformaiton T �xes i,−i if and
only if it is in the form T = S−1RS, where R(z) = λz for some non-zero complex number
λ. Hence the general form of a Möbius transformation that �xes i,−i is

T (z) =S−1(λS(z))

=S−1(λ
z − i
z + i

)

=
−iλ z−i

z+i
− i

λ z−i
z+i
− 1

=
(−iλ− i)z + (−λ+ 1)

(λ− 1)z + (−iλ− i)

where λ is a non-zero complex number.

4. Let C1, C2 be two clines. Fix 3 distinct points on C1 and 3 distinct points on C2.
By Fundamental Theorem of Möbius geometry, we can �nd a Möbius transformation T
mapping the 3 points on C1 to the 3 points on C2. As Möbius transformations map clines
to clines, and 3 distinct points uniquely determine a cline, we know that T (C1) = C2.

5. We will provide 2 solutions for question 5. The �rst solution uses the formula for symmet-
ric point |z∗−a||z−a| = R2, which is what everybody did. The second solution is purely
geometric, and doesn't require any calculations. The second solution shows the beauty
of Möbius geometry, and the reason why HK and UK Olympiad Maths teams often use
other geometry systems to solve Euclidean geometry problems. Transformations in other
geometry systems sometimes make the questions much easier (HK and UK Olympiad
Maths teams usually use projective geometry instead of Möbius geometry though). I
would recommend you to try to understand the second solution if you want to gain some
geometric intuition on Möbius geometry.
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In Mathematics (maybe in real life as well?), situation may become easier when you
look at things at a di�erent perspective. That's what we do with the second solution. In
Euclidean geometry, sometimes you put a point at (0, 0) and rotate some lines so that it's
horizontal/vertical, to make the calculations simpler . Similarly, in Möbius geometry, you
can apply a Möbius transformation to the �gure to make things simpler. To �gure out
the new �gure, you need to use that facts that Möbius transformations preserve angles,
map clines to clines, and map symmetric points to symmetric points. It may sounds
complicated at the �rst glance, but it becomes quick and obvious when you gain more
and more geometric intuition on Möbius geometry, just like how you do with Euclidean
geometry. In the past, personally I �nd that looking at YouTube videos with beautiful
animation on Möbius transformation is a good way to gain geometric intuition.
WARNING: Möbius transformations don't preserve centre of circles.

Solution 1:
Let the tangents to C at p and q meet at y and ∞.

By considering the angles, we can see that triangle zap and triangle pay are similar.
Hence |z−a||a−p| =

|p−a|
|a−y| .

Rearranging the equation, we get |y − a||z − a| = |p− a|2 = R2. Hence y = z∗.
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Solution 2:
Re-draw the same picture, with the point y being put at in�nity.

In this picture, the angle ∞pz is a right angle as it's an angle at a semi-circle. Hence z
is the centre of the circle C. By symmetry, the symmetric point of z in this picture is at
in�nity. So y = z∗.
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