1. Construct an immersion $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that is not a diffeomorphism onto its image.
2. Is $\left\{(x, y, z) \in \mathbb{R}^{3}: x^{3}+y^{3}+z^{3}-3 x y z=1\right\}$ a smooth submanifold of \mathbb{R}^{3} ?
3. For $0<r<1$, compute the area of $D_{r}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<r^{2}\right\}$ with the metric

$$
d s^{2}=\frac{1+x^{2}}{\left(1-x^{2}-y^{2}\right)^{2}} d x^{2}+\frac{1}{\left(1+x^{2}\right)\left(1-x^{2}-y^{2}\right)^{2}} d y^{2}
$$

4. Given a Riemannian manifold M, show that there exists a unique affine connection ∇ on M satisfying

$$
\nabla_{X} Y-\nabla_{Y} X=[X, Y] \text { and } X\langle Y, Z\rangle=\left\langle\nabla_{X} Y, Z\right\rangle+\left\langle Y, \nabla_{X} Z\right\rangle
$$

for smooth vector fields X, Y, Z on M.
5. The Poincaré half-plane is a hyperbolic plane $\left\{(x, y) \in \mathbb{R}^{2}: y>0\right\}$ with metric $g=\frac{1}{y^{2}}\left(d x^{2}+d y^{2}\right)$. It is known that any vertical half-line starting from the x-axis $\sigma(t)=\{(c, f(t)): c$ constant, $f(t)>0\}$ is a geodesic. Find $f(t)$.
(Hints: The equation of a geodesic: $\frac{d^{2} x_{k}}{d t^{2}}+\sum_{i, j} \Gamma_{i j}^{k} \frac{d x_{i}}{d t} \frac{d x_{j}}{d t}=0 k=1,2$; $\Gamma_{i j}^{k}=\frac{1}{2} \sum_{m}\left\{\frac{\partial}{\partial x_{i}} g_{j m}+\frac{\partial}{\partial x_{j}} g_{m i}-\frac{\partial}{\partial x_{m}} g_{i j}\right\} g^{m k} ;$
Among $\Gamma_{i j}^{k}$, you only need Γ_{22}^{2}.)
6. Let g be a metric on $M=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<1\right\}$ and h a metric on $N=\left\{(x, y) \in \mathbb{R}^{2}: y>0\right\}$ given by

$$
g_{i j}=\frac{4 \delta_{i j}}{\left(1-x^{2}-y^{2}\right)^{2}}, \quad h_{i j}=\frac{\delta_{i j}}{y^{2}} .
$$

Define a diffeomorphism $\phi: M \rightarrow N$ by

$$
\phi(x, y)=\left(\frac{2 x}{x^{2}+(1-y)^{2}}, \frac{1-x^{2}-y^{2}}{x^{2}+(1-y)^{2}}\right) .
$$

Suppose we know that

$$
h\left(d \phi\left(\frac{\partial}{\partial x}\right), d \phi\left(\frac{\partial}{\partial y}\right)\right)=g\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)
$$

and

$$
h\left(d \phi\left(\frac{\partial}{\partial y}\right), d \phi\left(\frac{\partial}{\partial y}\right)\right)=g\left(\frac{\partial}{\partial y}, \frac{\partial}{\partial y}\right) .
$$

Show that ϕ is an isometry.
7. For the Riemmannian curvature
$R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z$ and $R(X, Y, Z, W)=\langle R(X, Y) Z, W\rangle$,
show that
(a) $R(X, Y) Z+R(Z, X) Y+R(Y, Z) X=0$;
(Hint: Jacobi identy $[[X, Y], Z]+[[Y, Z], X]+[[Z, X], Y]=0$)
(b) $R(X, Y, Z, W)=R(Z, W, X, Y)$.

