
1 Basic concepts of convex optimization

In convex optimization, we consider the problem

min
x∈C

f(x)

where f : Rn → (−∞,∞] is a convex function and C is a convex subset of
Rn.
If x ∈ C ∩ dom(f), then x is called feasible. If there is at least one feasible
point, then the problem is called feasible.
x∗ is called a minimum of f over C if

x∗ ∈ C ∩ dom(f), f(x∗) = inf
x∈C

f(x)

We may write x∗ ∈ arg minx∈C f(x) or even x∗ = arg minx∈C f(x) if x∗ is
the unique minimizer.

Other than global minimum, we also have a weaker definition of local mim-
imum, one that is only minimum compared to the point nearby. We call x∗

a local minimum of f over C if x∗ ∈ C ∩dom(f) and there exists ε > 0 such
that

f(x∗) ≤ f(x), ∀x ∈ C with ||x− x∗|| < ε

In the convex setting, we have the following nice result.

Proposition: Let f : Rn → (−∞,∞] be a convex function and let C be a convex
set.
Then a local mimimum of f over C is also a global minimum of f over C.
If f is strictly convex, then there exists at most one global minimum of f over C.

Existence of solution
Consider the problem

min
x∈Rn

f(x)

where f is convex.
Suppose the level sets Va = {x| f(x) ≤ a} are also compact. Then we can
consider the problem

min
x∈Va

f(x)
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for some Va that is nonempty. Then there exist at least one global minimizer.
Remark: We can also show that f is coercive, which is equivalent to the level
sets of f are compact.

1.1 Optimal conditions

In a unconstrained problem, one has a simple optimality test, which is the
’derivative’ test in calculus.

Let f be a differentiable convex function on Rn. Then x∗

solves
min
x∈Rn

f(x)

if and only if ∇f(x∗) = 0.

How about a constrained problem?
Let’s consider the general constrained problem

min
x∈C

f(x)

where C is a convex set, and f is convex.

We have the following result.

Proposition: Let C be a nonempty convex set and let f : Rn → R be
a convex differentiable function over an open set that contains C. Then
x∗ ∈ C minimizes f over C if and only if

〈∇f(x∗), (z − x∗)〉 ≥ 0, ∀z ∈ C.

Proof. Suppose 〈∇f(x∗), (z − x∗)〉 ≥ 0, ∀z ∈ C, then we have,

f(z)− f(x∗) ≥ 〈∇f(x∗), (z − x∗)〉 ≥ 0, ∀z ∈ C.

Hence x∗ indeed minimizes f over C.
Conversely, suppose x∗ minimizes f over C. Suppose on the contrary that
〈∇f(x∗), (z − x∗)〉 < 0 for some z ∈ C, then

lim
α↓0

f(x∗ + α(z − x∗))− f(x∗)

α
= 〈∇f(x∗), (z − x∗)〉 < 0.

Then for sufficiently small α, we have f(x∗ + α(z − x∗)) − f(x∗) < 0, con-
tradicting the optimality of x∗.
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1.2 Examples

(a) Let’s consider the following linear constrained problem.

min
x∈Rn

f(x) subject to Ax = b

where A is a m× n matrix and b ∈ Rm.
Suppose we have a solution x∗, then

〈∇f(x∗), y − x∗〉 ≥ 0, ∀y such that Ay = b

This is the same as

〈∇f(x∗), h〉 ≥ 0, ∀h ∈ Null(A).

Since −h ∈ Null(A) if h ∈ Null(A), we have

〈∇f(x∗), h〉 = 0, ∀h ∈ Null(A).

Hence ∇f(x∗) ∈ Null(A)⊥ = Ran(AT ).
So there exists µ ∈ Rm such

∇f(x∗) +ATµ = 0.

To conclude, x∗ is a solution to the minimization problem if and only if

1. Ax∗ = b

2. There exists µ∗ ∈ Rm such that ∇f(x∗) +ATµ = 0.

(b) Let’s consider the minimization problem

min
x∈Rn

f(x), subject to x ≥ 0.

Suppose we have a solution x∗, then

〈∇f(x∗), y − x∗〉 ≥ 0, ∀y ∈ Rn+.

In particular, 0, 2x∗ ∈ Rn+, so

〈∇f(x∗), x∗〉 = 0, 〈∇f(x∗), y〉 ≥ 0, ∀y ∈ Rn+.

Hence, ∇f(x∗) ≥ 0. This is the same as saying there exists λ∗ ≥ 0 such that

∇f(x∗)− λ∗ = 0

To conclude, x∗ is a solution if and only if

1. x∗ ≥ 0

2. There exists λ∗ ≥ 0 such that ∇f(x∗)− λ∗ = 0

3. λ∗ix
∗
i = 0

3


