1 Basic concepts of convex optimization
In convex optimization, we consider the problem

min f(x

min f(z)

where f : R" — (—o00,00] is a convex function and C' is a convex subset of
R™.

If x € C Ndom(f), then z is called feasible. If there is at least one feasible
point, then the problem is called feasible.

x* is called a minimum of f over C' if

z* e CNndom(f), f(z*)= inf f(x)
zeC
We may write * € argmingco f(z) or even z* = argmingec f(z) if x* is
the unique minimizer.

Other than global minimum, we also have a weaker definition of local mim-
imum, one that is only minimum compared to the point nearby. We call x*
a local minimum of f over C if 2* € CNdom(f) and there exists € > 0 such
that

f@") < f(z), Vo € C with ||z —2™|| <€

In the convex setting, we have the following nice result.

Proposition: Let f : R" — (—o00, 00| be a convex function and let C' be a convex
set.

Then a local mimimum of f over C' is also a global minimum of f over C.

If f is strictly convex, then there exists at most one global minimum of f over C.

Existence of solution
Consider the problem

min f(z)

where f is convex.
Suppose the level sets V, = {z| f(x) < a} are also compact. Then we can
consider the problem

;glvn f(z)



for some V, that is nonempty. Then there exist at least one global minimizer.
Remark: We can also show that f is coercive, which is equivalent to the level
sets of f are compact.

1.1 Optimal conditions

In a unconstrained problem, one has a simple optimality test, which is the
"derivative’ test in calculus.

Let f be a differentiable convex function on R™. Then x*
solves

min f(z)

if and only if V f(z*) = 0.

How about a constrained problem?
Let’s consider the general constrained problem

min f(x)

zeC

where C is a convex set, and f is convex.

We have the following result.

Proposition: Let C' be a nonempty convex set and let f : R®™ — R be
a convex differentiable function over an open set that contains C. Then
z* € C minimizes f over C if and only if

(Vf(z*),(z—2")) >0, Vz € C.

Proof. Suppose (Vf(x*),(z —z*)) >0, Vz € C, then we have,
f(z) = f@*) > (Vf(x¥),(z —z%)) >0, Vz € C.

Hence z* indeed minimizes f over C.
Conversely, suppose x* minimizes f over C'. Suppose on the contrary that
(Vf(z*),(z —2*)) <0 for some z € C, then

o 1@ +alz—a%) - f()
al0 «

— (Vf(a"), (= - a")) < 0.

Then for sufficiently small «, we have f(z* + a(z — z*)) — f(z*) < 0, con-
tradicting the optimality of z*. O



1.2 Examples

(a) Let’s consider the following linear constrained problem.

min f(z) subject to Az =b

r€eR™
where A is a m X n matrix and b € R™.
Suppose we have a solution x*, then

(Vf(x®),y —2*) >0, Yy such that Ay =b
This is the same as
(Vf(xz*),h) >0, Yh € Null(A4).
Since —h € Null(A) if h € Null(A), we have
(Vf(x*),h)y =0, Yh € Null(4).

Hence V f(x*) € Null(A)* = Ran(A7T).
So there exists p € R™ such

Vi) +ATp=0.
To conclude, x* is a solution to the minimization problem if and only if
1. Az* =b
2. There exists u* € R™ such that Vf(z*) + ATy = 0.

(b) Let’s consider the minimization problem

min f(x), subject to x > 0.
x€R?

Suppose we have a solution z*, then
(Vf(*),y—a*) >0, Vy € BT
In particular, 0,2z* € R? | so
(Vf(@"),2") =0, (Vf(z"),y) 20, ¥y € RY.
Hence, V f(z*) > 0. This is the same as saying there exists \* > 0 such that
V()= A*=0

To conclude, x* is a solution if and only if

1. 2>0

2. There exists A* > 0 such that Vf(z*) = A* =0

3. Njz; =0



