
1 Convex Functions

1.1 Definition and Basic Properties

Let C be a convex subset of Rn. A function f : C → R is called convex if

f(αx+ (1− α)y) ≤ αf(x) + (1− α)y,∀x, y ∈ C,∀α ∈ [0, 1].

A function is called stricly convex if the inequality above is strict for all x, y ∈ C
with x 6= y, and all α ∈ (0, 1). A function is called concave if (−f) is convex.

For a function f : C → R, we define the level sets of f to be {x | f(x) ≤ λ}.
If a function is convex, then all its level sets are also convex. However, the
convexity of all level sets of a function does not necessarily imply the convexity
of the function itself.

Examples of Convex Functions
The following functions are convex:

(a) f(x) := a′x+ b for x ∈ Rn, where a ∈ Rn and b ∈ R.

(b) g(x) := ||x|| for x ∈ Rn.

(c) h(x) := x2 for x ∈ R.

(d) F (x) := 1
2x
′Ax for x ∈ Rn, where A is a n× n symmetric positive semidef-

inite matrix. (i.e. x′Ax ≥ 0 for all x ∈ Rn)

1.2 Characterizations of Differentiable Convex Functions

We now give some characterizations of convexity for once or twice differentiable
functions.

Propopsition: Let C be a nonempty convex open set. Let f : Rn → R
be differentiable over an open set that contains C.

(a) f is convex if and only if f(z) ≥ f(x) +∇f(x)′(z − x), for all x, z ∈ C.

(b) f is stricly convex if and only if the above inequality is strict for x 6= z.

Proof. (⇐= ) Let x, y ∈ C, α ∈ [0, 1] and z = αx+ (1− α)y. We have,

f(x) ≥ f(z) +∇f(z)′(x− z)

f(y) ≥ f(z) +∇f(z)′(y − z).

Then,

αf(x)+(1−α)f(y) ≥ f(z)′(α(x−z)+(1−α)(y−z)) = f(z) = f(αx+(1−α)y)
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Hence f is convex.
Conversely, suppose f is convex. For x 6= z, define g : (0, 1]→ R by

g(α) =
f(x+ α(z − x))− f(x)

α
.

Consider α1, α2 with 0 < α1 < α2 < 1. Let α = α1

α2
and z = x + α2(z − x).

Then f(x+ α(z − x)) ≤ αf(z) + (1− α)f(x). So,

f(x+ α(z − x))− f(x)

α
≤ f(z)− f(x).

Therefore,

f(x+ α1(z − x))− f(x)

α1
≤ f(x+ α2(z − x))− f(x)

α2
.

So, g(α1) ≤ g(α2), that is, g is monotonically increasing.
Then ∇f(x)′(z − x) = limα↓0 g(α) ≤ g(1) = f(z)− f(x). So we are done.
The proof for (b) is the same as (a), we just change all inequality to strict
inequality.

As a consequence of the above proposition, we have a useful optimal condi-
tion for unconstrained optimization. Recall that in singile variable calculus, if
f : R→ R is a differentiable convex function with f ′(x∗) = 0, then x∗ minimizes
f . Here, we give a similar result.

Proposition: Let C be a nonempty convex set and let f : Rn → R be a
convex differentiable function over an open set that contains C. Then x∗ ∈ C
minimizes f over C if and only if

∇f(x∗)′(z − x∗) ≥ 0,∀z ∈ C.

Proof. Suppose ∇f(x∗)′(z − x∗) ≥ 0,∀z ∈ C, then by Prop 1.1.3(a), we have,

f(z)− f(x∗) ≥ ∇f(x∗)′(z − x∗) ≥ 0,∀z ∈ C.

Hence x∗ indeed minimizes f over C.
Conversely, suppose x∗ minimizes f over C. Suppose on the contrary that
∇f(x∗)′(z − x∗) < 0 for some z ∈ C, then

lim
α↓0

f(x∗ + α(z − x∗)− f(x∗)

α
= ∇f(x∗)′(z − x∗) < 0.

Then for sufficiently small α, we have f(x∗+α(z−x∗)−f(x∗) < 0, contradicting
the optimality of x∗.
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For twice continuously differentiable functions, we have the following char-
acterization.
Proposition 2.1.5: Let C be a nonempty convex set ⊂ Rn and f : Rn → R
be twice continuously differentiable over an open set that contains C. Then:

(a) If ∇2f(x) is positive semidefinite for all x ∈ C, then f is convex over C.

(b) If ∇2f(x) is positive definite for all x ∈ C, then f is strictly convex over C.

(c) If C is open and f is convex over C, then ∇2f(x) is positive semidefinite
for all x ∈ C.

Proof. (a) For all x, y ∈ C,

f(y) = f(x) +∇f(x)′(y − x) +
1

2
(y − x)′∇2f(x+ α(y − x))(y − x)

for some α ∈ [0, 1]. Since ∇2f is positive semidefinite, we have

f(y) ≥ f(x) +∇f(x)′(y − x),∀x, y ∈ C.

Hence, f is convex over C.
(b) We have f(y) > f(x) +∇f(x)(y − x) for all x.y ∈ C with x 6= y since ∇2f
is positive definite.
(c) Assume there exist x ∈ C and z ∈ Rn such that z′∇2f(x)z < 0. There
exists ε > 0 such that x + εz ∈ C and z′∇2f(x + αεz)z < 0 for all α ∈ [0, 1].
Then

f(x+ z) = f(x) +∇f(x)′z + z′∇2f(x+ αz)z < f(x) +∇f(x)′z.

This contradicts the convexity of f over C. Hence, ∇2f is indeed positive
semidefinite over C.
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