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Below is a brief introduction to properties of harmonic functions. Removable singularity
theorem and Liouville’s theorem for harmonic functions are proven by maximum prin-
ciple and Poisson integral formula. The main reference is Chapter 2 of Gilbarg and
Trudinger’s Elliptic Partial Differential Equations of Second Order. Below, Ω always
denotes a nonempty connected open set in R2 = C.

1 Properties of Harmonic Functions

A C2 function u : Ω→ R is harmonic iff ∆u = uxx + uyy = 0.

Harmonic functions and holomorphic functions are intimately related.

1. f is holomorphic iff ∂z̄f = 0, whereas u is harmonic iff ∂z∂z̄u = 0.

2. If f is holomorphic, then <f , =f and log |f | are harmonic whenever finitely defined.
If Ω is simply connected and u is harmonic, then f = u + iv, where v =

∫
(uxdy −

uydx), is holomorphic, and log |ef | = u.

3. (Cauchy integral formul and mean-value property) If f is holmorphic, then

f(z) =
1

2πi

∫
∂B(z,r)

f(w)

w − z
dw.

If u is harmonic, then

u(z) =
1

2πr

∫
∂B(z,r)

u(w)dw =
1

2π

∫
∂B(z,r)

u(w)

|w − z|
dw. (1)

4. (strong maximum (modulus) principle) If a holomorphic f attains the maximum
modulus in the interior, then it is constant. If a harmonic u attains the maximum
in the interior, then it is constant.

5. (weak maximum (modulus) principle) The maximum modulus of a holomorphic
function or a harmonic function on a bounded domain is attained on the boundary.

Mean-value property for harmonic function is more rigid than that for holomorphic func-
tion because the domain of integration in (1) cannot be any ∂B(w, r) containing z. Indeed,
the offset mean-value property is given by the more involved Poisson integral formula.
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Proposition 1 (Poisson integral formula). Suppose u is harmonic on a neighbourhood
of B(0, R). Let ϕ = u|∂B(0, R). Then for x ∈ B(0, R)

u(x) =

∫
∂B(0,R)

ϕ(y)P2(x, y)dy, (2)

where Pn(x, y) = 1
|∂B(0,R)|

R2−|x|2
R2

(
R
|x−y|

)n
.

Conversely, if ϕ is a continuous function on ∂B(0, R), then (2) defines a harmonic function
on B(0, R) whose continuous extension to ∂B(0, R) exists and agrees with ϕ.

Corollary 2. Harmonic functions are smooth.

Below, we prove removable singularity theorem and Liouville’s theorem for harmonic
functions.

Proposition 3 (Removable singularity theorem). Suppose u is harmonic on B(0, r)\{0}.
If u(z) = o(log |z|) as z → 0, then u extends to a harmonic function on B(0, r).

Proof. It suffices to show u agrees to ũ defined by Poisson integral formula, which is a
harmonic function on B(0, r). Let w = ũ− u. Then w(z) = o(log |z|) = o(log |z| − log r).
Note that both w and log |z|− log r vanish on ∂B(0, r). By maximum principle, for ε > 0,
since ±w(z) + ε log |z| → −∞, supB(0,r)\{0}±w+ ε(log |z| − log r) ≤ 0. The result follows
by letting ε→ 0.

To prove Liouville’s property, it is handy to have an estimate on the gradient.

Proposition 4 (gradient estimate). Suppose u is harmonic on a neighbourhood ofB(0, R).
Then

|∂iu(0)| ≤ n

R
‖u‖L∞(B(0,R)).

Remark. Repeated application of the gradient estimate shows harmonic functions are in
fact analytic.

Proof. Apply differentiation under the integral sign on Poisson integral formula.

Proposition 5 (Liouville’s theorem). If a harmonic function on R2 is bounded, then it
is constant.

Proof. Let R→∞ in the gradient estimate.

Exercise 6. Complete the following alternative proof of Liouville’s theorem:

By Poisson integral formula, we have the following Harnack inequality for nonnegative
harmonic u on R2

1

(R + |x|)
R− |x|
R

u(0) ≤ u(x) ≤ 1

(R− |x|)
R + |x|
R

u(0).

Liouville’s theorem for nonnegative functions then follows by letting R→∞ on the far
right. The general case follows by translation.


