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1 Complex differential operators

The differential operators ∂
∂z

and ∂
∂z̄

simplifies notation for handling holomorphic func-
tions. Below is a brief presentation of their abstract definition as eigenvectors of the
multiplicative action of the imaginary unit in the tangent space. The consideration of
these eigenvectors is traced from the potential discrepancy of the action of the imaginary
units, and their actions on functions are discussed.

It is hoped that this note helps ease the reader’s uneasiness in handling these operators,
but in any case, these operators are mostly formal devise for simplifying notations, and
from this perspective, efficient application is more important than abstract understanding.

Elementary knowledge of manifold theory is assumed. The main reference is Chapter 1.2 of
Huybrechts’ Complex Geometry. The reader is referred to Chapter 3 of Lee’s Introduction
to Smooth Manifolds for a review on manifold theory.

1.1 Two complex versions of the tangent space

Let U be a nonempty open set in C. Recall (or note) that partial derivatives may be iden-
tified with tangent vectors along which the partial derivatives are directional derivatives,
for instance ∂

∂x
and ∂

∂y
may be identified with e1 and e2. The definitions of ∂

∂z
and ∂

∂z̄

arise from the compatibility consideration of the two actions (nonstandard terminology)
of the imaginary units.

The complexification of the tangent plane can be achieved simply by taking formal com-
plex linear combination of tangent vectors. Explicitly, this gives

(TpU)C = {u+ iv : u, v ∈ TpU},

On the other hand, the geometric action J of rotation by π/2 on the real tangent space
TpU also defines a complex vector space (TpU, J), where iv = Jv. This is well defined as
long as J2 = − id.

Clearly, the actions of i on (TpU)C and (TpU, J) are different. For instance, in (TpU, J),
Je1 = e2 = e2, which is different from ie1 = 0 + ie1 in (TpU)C. The two are compatible,
though, on the eigenspace T 1,0

p U of J wrt i, where Jv = iv, and they are off only by a
sign on the eigenspace T 0,1

p U wrt −i, where Jv = −iv. Since J2 = − id, ±i are all the
eigenvalues of J , hence this gives a decomposition of (TpU)C into T 1,0

p U ⊕ T 0,1
p U . Note

further that conjugation is a conjugate-isomorphism between the two factors.
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Now, (TpU, J) is complex-isomorphic to T 1,0
p U and conjugate-isomorphic to T 0,1

p U via
projection composed with inclusion, or more explicitly, Pv = 1

2
(v − iJv) and P̄ v =

1
2
(v + iJv) respectively. Now, all complex-analytical computation on (TpU, J) can be

carried out in T 1,0
p U .

Let E = Pe1. It will be shown that E = ∂
∂z

, or rather, its dual E∗ wrt the basis {E, Ē} is

E∗ = dz = dx+ idy,

where z : R2 → C is the map defined by

z(x, y) = x+ iy.

To this end, it suffices to showE∗e1 = 1 and E∗Je1 = i. Since Pv = (E∗v)E, E = Pe1 = E∗e1E,
and hence E∗e1 = 1. Plugging in E and Ē shows E∗J = iE∗, and the result follows.

1.2 Mapping, Function and Holomorphy

Consider a C1 function f : U → C. It may be viewed as a complex-valued function,
or a mapping into R2. The former leads to consideration of the differential form df ,
whereas the latter leads to the differential Df . To relate the two, a postcomposition with
z(x, y) = x+ iy converts the mapping into a function, and hence df = D(z ◦ f) = dzDf .
Similarly, df̄ = dz̄Df , and hence we have the matrix representation of Df in the basis of
{ ∂
∂z
, ∂
∂z̄
}, namely

[Df ] =

[
∂
∂z
f ∂

∂z̄
f

∂
∂z
f̄ ∂

∂z̄
f̄

]
,

where ∂
∂z
f = df( ∂

∂z
), and the rest is similar.

f is holomorphic iff it is, infinitesimally, a multiplication. This can be characterised by
commutation of the differential of the map and the action of the imaginary unit, in symbol,

DfJ = JDf.

From the perspective of differential form, this is equivalent to

∂

∂z̄
f = 0.

To see this, first note that ∂
∂z̄
f = df ∂

∂z̄
= dzDf ∂

∂z̄
= E∗DfĒ. Suppose the differential com-

mutes with J , then JDfĒ = DfJĒ = −iDfĒ, and hence DfĒ ∈ T 0,1
f(p)C. Conversely, if

E∗DfĒ = 0, then JDfĒ = −iDfĒ = DfJĒ, conjugating, and observing Df and J are
real, gives JDfE = DfJE as well, and hence DfJ = JDf . The result then follows.

1.3 Connection with advanced calculus

Since df = ∂zfdz + ∂z̄fdz̄, f is holomorphic iff fdz is closed. This reduces Morera’s
theorem and Cauchy-Goursat theorem to advanced calculus under the assumption of C1,
and once Cauchy integral formula for infinitesimal circles is known by direct computation.
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Morera’s theorem If f(z)dz is exact, then it is closed.

Cauchy-Goursat theorem If f(z)dz is closed, then
∫
∂Ω
f(z)dz = 0.

Calculus of residue Apply Cauchy-Goursat theorem on the complement of discs at
singularities, and the integral on the circles are given by direct computation.

For integration, a change of basis computation shows dz ∧ dz̄ = −2idx ∧ dy, hence∫∫
fdx ∧ dy = −2i

∫∫
fdz ∧ dz̄.

For change of variables, by the matrix representation of Df above,∫∫
f(Ω)

gdudv =

∫∫
Ω

(g ◦ f)||∂zf |2 − |∂z̄f |2|dxdy.

2 Meromorphic function

One of the most important facts about an isolated singularity is that the local behavior
is completely described by the Laurent series. A lot of properties becomes transparent
upon inspection of the Laurent series.

Proposition 1. If f : D \ {0} is holomorphic, then f(z) =
∑∞

n=−∞ cnz
n for some (cn).

The convergence is absolute and uniform on compact sets.

Proof. Fix z ∈ D \ {0}. Let r < |z|. Then by Cauchy integral formula

f(z) =
1

2πi

∫
∂B1−∂Br

f(w)

w − z
dw. (1)

Just as the case of holomorphic functions, we would like to express 1
w−z in series form

1
w

∑
(z/w)n or 1

z

∑
(w/z)n, and pull the sum out of the intergal. This is justified by Fu-

bini’s theorem as a power series is absolutely convergent, and the other factors of the
integral as well as the domain of integration are bounded. On ∂B1, |z/w| < 1, hence∫

∂B1

f(w)

w − z
dw =

∫
∂B1

f(w)

w

∑
(z/w)ndw =

∞∑
n=0

∫
∂B1

f(w)

wn+1
dwzn.

Similarly, ∫
∂Br

f(w)

w − z
dw = −

∞∑
n=0

∫
∂Br

f(w)wndw
1

zn+1
.

Since f(w)wn is holomorphic on D \ {0}, Cauchy-Goursat theorem shows
∫
∂B1−∂Br

f(w)wndw = 0,

and hence
∫
∂Br

f(w)wndw =
∫
∂B1

f(w)wndw. The desired equation then follows with

cn =
1

2πi

∫
∂B1

f(w)

wn+1
dw.
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Exercise 2. Why is the convergence absolute and uniform on compact sets?

Exercise 3. Is the Laurent series unique, i.e. is it possible that
∑∞
−∞ cnz

n =
∑∞
−∞ c̃nz

n

but cn 6= c̃n for some n?

The type of the singularity is immediate from the Laurent series. If cn = 0 for all negative
n, then the singularity is removable. If cn = 0 for sufficiently negative n, then the
singularity is a pole. Otherwise, it is essential. The behavior of an essential singularity is
not clear from this definition though. In fact, f(Br \ {0}) is dense for every r < 1. To
prove this, we need more knowledge about removable singularities though. We will follow
the arguments in Chapter 3.3 of Stein and Shakarchi’s Complex Analysis.

Lemma 4 (Riemann removable singularity theorem). If f : D \ {0} is holomorphic and
f is bounded, then f admits a holomorphic extension to D.

Proof. Refer (1) and consider the integral on ∂Br . As r → 0, since f is bounded,
|w − z| ≥ |z| − r is bounded away from 0, and the length of the circle converges to 0,∫
∂Br

f(w)
w−z dw → 0 as r → 0.

Therefore, f(z) = 1
2πi

∫
∂B1

f(w)
w−z dw, where the righ-hand side is holomorphic, either Mor-

era’s theorem or by differentiation under integral sign, which holds because the domain
is compact and the integrand is continuously differentiable 1.

Proposition 5 (Weierstrass theorem on essential singularity). If f : D \ {0} has an
essential singularity at 0, then f(Br \ {0}) is dense for r < 1.

Proof. We prove the contrapositive. Suppose it is not dense, then it is bounded away
from a number, say w0. Then g = 1

f−w0
is bounded near 0, and hence has a removable

singularity. Therefore, f = w0+ 1
g
. Taylor expanding g gives g(z) = cnz

n+cn+1z
n+1+... =

zn(cn + cn+1z + ...) = znh(z) for some cn 6= 0, and hence holomorphic h with h(0) 6= 0.
Therefore, f(z) = w0 + 1

zn
1

h(z)
, where 1/h is holomorphic near 0. Now, if n = 0, then the

singularity of f is removable; if n > 0, it is a pole.

Exercise 6. Suppose f : D \ {0} → C is holomorphic and f(z) = O(|z|−1/2) as z → 0.
Show that the singularity at 0 is removable.

Proof. If the singularity is a pole, then f(z) = 1
zn
g(z) for some n ≥ 1 and holomorphic

g with g(0) 6= 0, and hence |z|−n = O(f(z)). Then the assumption implies |z|−n =
O(|z|−1/2), which is impossible.

If the singularity is essential, then the image of f(B(0, r) \ {0}) is dense, in particular,
cannot be bounded, contradictory to the assumption that it is bounded by C/r1/2.

Remark. The key idea is that f and z−n are essentially the same (in the sense that they
are bounded by each other), while z−n is too large to be O(z−1/2).

Alternative proof. Again, we show
∫
∂Br

f(w)
w−z dw → 0. Again, |w−z| is bounded away from

0, f = O(r−1/2) and the length of the arc is O(r), and hence the integral is O(1·r−1/2 ·r) =
O(r1/2). The result then follows.

1see the note for week 2 for comments on differentiation under integral sign


