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1 Arzela-Ascoli theorem

This section mainly follows Sections 7.22-7.25 of [5].

The Arzela-Ascoli theorem is proven here for your reference.

Lemma 1 (diagonal argument). Let Q = {qj} be a countable set and fn : Q → C be a
sequence of functions. If {fn(q)} is bounded for each q ∈ Q, then (fn) has a subsequence
(fnk

) that is pointwise convergent.

Proof. Below, both superscripts and subscripts denote indices rather than powers. For a
function, say s, defined on a subset of N, both s(n) and sn denotes the function value of
s at n.

A sequence ((fnk
l
)l∈N)k∈N of subsequences of (fn)n∈N, i.e. for each k, nk : N → N defined

by nk(l) = nk
l is a strictly increasing function, is constructed inductively such that

1. for each k, (fnk
l
)l∈N is a subsequence of (fn)n∈N,

2. for each k, (fnk+1
l

)l∈N is a subsequence of (fnk
l
)l∈N, i.e. there exists a strictly increas-

ing lk : N→ N such that nk+1 = nk ◦ lk, and

3. for each k, (fnk+1
l

(qj))l∈N converges if j ≤ k.

For k = 1, since (fn(q1)) is bounded, it has a convergent subsequence (fn1
l
(q1)). Sup-

pose, for some k, nk has been inductively constructed. It suffices to construct nk+1 such
that (fnk+1

l
)l∈N is a subsequence of (fnk

l
)l∈N and (fnk+1

l
(qk+1))l∈N converges. Again by

boundedness of (fnk
l
(qk+1))l∈N, it has a convergent subsequence, in other words, there

exists some strictly increasing lk : N → N such that (fnk
l(j)

(qk+1))j∈N converges. Letting

nk+1(j) = nk(l(j)) gives the desired subsequence.

Now, a subsequence of (fn)n∈N that is eventually a subsequence of each (fnk
l
)l∈N is con-

structed. Then this subsequence converges pointwise.

Note that n(k) = nk(k) defines a strictly increasing sequence, because nk+1
k+1 > nk

k+1 > nk
k,

and hence (fnk
k
)k∈N is a subsequence of (fn)n∈N. It remains to construct, for each k, an

increasing pk : N ∩ [k,∞)→ N such that nj = nj
j = nk ◦ pk for j ≥ k, and hence (fnj

)j≥k
is a subsequence of (fnk

l
)l∈N. Define, for j ≥ k, pk(j) = (lk ◦ lk+2... ◦ lj−2 ◦ lj−1)(j). The

result then follows.



2

Proposition 2. Let K be a compact metric space with a countable dense set Q. Let
fn : K → C be an equicontinuous sequence. Suppose {fn(q)} is bounded for each q ∈ Q,
then (fn) has a subsequence that is uniformly convergent.

Proof. By the above lemma, passing to a subsequence if necessary, (fn) is pointwise
convergent on Q. For uniform convergence, it remains to show uniform Cauchy-ness. Fix
ε > 0 and suppose d(x, y) < δ, where δ is given by the definition of equicontinuity.

By compactness, finitely many Bi = B(xi, δ/2)’s cover K, and by density, each Bi contains
a qi ∈ Q, so there exist finitely many qi ∈ Q’s such that for every x ∈ K, there exists a qi
such that d(x, qi) < δ.

Since

|fn(x)− fm(x)| ≤ |fn(qi)− fm(qi)|+ |fn(x)− fn(qi)|+ |fm(x)− fm(qi)|,

where the first term is uniformly bounded by ε if n,m is sufficiently large (choose the
largest N corresponding to the qi’s), and the other terms are bounded by ε by equiconti-
nuity. Uniform Cauchy-ness then follows.

Remark. In fact, every compact metric space has a countable dense set, which can be
constructed as follows. For each positive integer n, finitely B(xni , 1/n)’s cover K. Then
{xni }n,i is the desired countable dense set.

2 Covering of C \ {0, 1} and Picard’s Little Theorem

In this section, a covering map p : D → C \ {0, 1} will be constructed to prove Picard’s
Little Theorem.

Theorem 3 (Picard’s Little Theorem). Let X = C\{0, 1}. If f : C→ X is holomorphic,
then it is constant.

We first survey covering space theory as in Chapter 1.3 of [2]. A continuous map p :
X̃ → X is a covering map iff for every for every x ∈ X, p−1{x} is discrete and it has a
neigbhorhood, called an evenly covered neighborhood, U such that p−1(U) is a disjoint
union of open sets, called sheets, each of which is homeomorphic to U via p.

Example 4. Let X = C \ {0} and X̃ = C. Then p : X̃ → X defined by p(z) = exp z is
a covering map.

Let f : Y → X be continuous. f̃ : Y → X̃ is said to be a lift iff f = pf̃ . Lifts may be
viewed as partial inverses of the covering map. For instance, let V be a sheet of preimage
of an evenly covered neighborhood U of a point x0 ∈ X. Then p−1 : U → V is well
defined, and is the lift of the inclusion map i : U → X (defined by i(x) = x). Less
trivially, the logarithm of a map is a lift.

Example 5. Let Ω be a simply-connected domain. Then every continuous f : Ω→ C\{0}
admits a logarithm g : Ω → C such that exp g = f . g is a lift of f with respect to the
covering in Example 4.
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Lifts are in general unique and they exist under very mild assumptions. In the two
propositions below, let p : X̃ → X be a covering map and f : Y → X be continuous;
x0 ∈ X, x̃0 ∈ p−1{x0} and y0 ∈ f−1{x}; and suppose futher that Y is connected.

Proposition 6 (Unique lift property; Theorem 1.34 in [2]). Lifts of f that agree at a
point are identical.

Proof. Fix two such lifts. Since lifts must map nearby points to the same sheet of an
evenly covered neighborhood, points where the lifts agree and do not both form open
sets. The result follows from connectedness.

Proposition 7 (Lifting criterion; Theorem 1.33 in [2]). Suppose Y is (connected and)
locally path connected. Then f lifts iff the image of every loop in Y based at y0 is
homotopic to the image of a loop in X̃ based at X̃0.

Sketch of Proof. The homotopy lifting criterion is first established: if f can be lifted, then
a homotopy F : Y × I → X of f (i.e. F (y, 0) = f(y) for every y ∈ Y ) can be lifted.
To prove this, it suffices to lift F on N × I for a neighborhood N of y for each y ∈ Y .
Uniqueness implies they can be pasted together to form a global lift. Fix y ∈ Y . Compact-
ness implies there are finitely many neighborhoods Ni’s of y and subintervals Ii of I such
that F (Ni × Ii) is mapped to an evenly covered open set. Let N be the intersection of
the Ni’s. Then F may be lifted on N × Ii one by one to the corresponding sheets through
the local inverses.

The proof of the proposition proceeds as follows. By homotopy lifting criterion, paths in
X, which are functions from I = {∗} × I, can be lifted. Then for each y, there exists a
path γ from y0 to y, and f̃(y) is defined as the endpoint of the lift of f(γ). To show f̃
is well defined, consider an alternative path γ′ between y0 and y. Then γ and γ′ form a
loop Γ. It suffices to show f(Γ) lifts. Indeed, this follows by homotopy lifting criterion,
since the assumption implies f(Γ) is homotopic to p(h̃) for some loop h̃ in X̃, and p(h̃)
lifts to h̃ by definition.

Corollary 8. If Y is (connected and) locally path connected and simply-connected, then
f lifts.

Proof. Every loop in Y is null homotopic, and hence so is its image under f , which is the
image of a constant loop in X̃.

Now, to prove Picard’s Little Theorem, it suffices to construct a holomorphic covering
map p : D→ C \ {0, 1}. Then holomorphic maps on C to X lift to D. Then the theorem
follows from Liouville’s theorem.

To construct the covering map, some geometric terminology is in place. Hereafter, X
denotes C \ {0, 1} and let L = X ∩ {=z = 0}.
On the unit disc D, points on the unit circle are called ideal points, or points at infinity.
Geodesics, substitute of lines, are circular arcs that are normal to the unit circle (again,
lines are infinitely large circles), and geodesics are to be distinguished from arcs (non-
standard terminology), which will exclusively mean arcs on the unit circles below. Note
that inversion with respect to geodesics maps ideal points to ideal points. In terms of



4

notations, for distinct ideal points A, B and C, denote by AB the geodesic through A and

B, and by
_
AB the arc that avoids C (C is omitted since it is often clear from context.).

An ideal triangle is a region bounded by three geodesics that intersect pairwise at the
infinity. An ideal polygon is defined analogously.

The covering map is constructed in Section 3 of [4] as follows. (In the tutorial, I said this
was in Conway’s book. In fact, it should be Lang’s.)

Proposition 9. There exists a holomorphic covering map p : D→ X.

Proof. Fix three distinct ideal points A,B,C and let T0 be the ideal triangle they form.
By Riemann mapping theorem, there exists a map p from T0 to the upper half-plane,
with A,B,C mapped to 0, 1,∞. Then the boundary of T0 is mapped to L. By Schwarz
reflection principle, p may be extended to the image of T0 under inversion with respect to
its boundary. Let T1 be the union of T0 and its image under inversion with respect to its
boundary. Then F maps T1 to X. Note that this may be iterated: suppose p maps Tn to
X, and its boundary to L, then p may be extended to Tn+1, the union of Tn and its image
under inversion with respect to its boundary, and the boundary of Tn+1 is again mapped
to L. Lemma 10 shows the union of all Tn is the unit disc. The result then follows.

Remark. In the proof above, one needs that the Riemann map extends to the boundary.
This is guaranteed for domains with a Jordan boundary. This is known as Caratheodory’s
Theorem and is Theorem 5.1.1 in [3].

Lemma 10. Every point in the disc is in the image of some iterated reflections of an
ideal triangle.

Proof. Observe that fractional linear transformations preserve reflection. By mapping a
point to the origin, it suffices to show that every ideal triangle can be iteratively reflected
to contain the origin. Observe that an ideal triangle contains the origin iff the longest
arc (on the unit circle) through the vertices of the ideal triangle is longer than π. It will
be shown that an ideal triangle may be iteratively reflected such that, if the image never
contains the origin, the length of the longest arc decreases by at least a constant each
time, and the length of the shortest arc is bounded below.

Suppose an ideal triangle T does not contain the origin. It will be reflected about the
longest edge (which subtends the longest arc on the unit circle). It suffices to show that
the length of the shortest arc of T does not decrease after the reflection, and the length
of the longest arc diminishes by the length of the shortest arc of T after the reflection.

Let A,B,C be the vertices of T and
_
AB be the shortest and

_
AC be the longest. Let P

be the (Euclidean) center of the geodesic (which is a part of an Euclidean circle) through
A and C. Then the straight line through A and P is perpendicular to the radius r of the
unit circle through A. Let D be the reflection of B about r. It suffices to show the image
of B about the geodesic AC, which is the nontrivial intersection of the unit circle with

the straight line through A and B, does not lies between
_
AD. This is indeed true because

the straight line between B and D is also perpendicular to r, and hence parallel to the
one through A and P . Rotating the line about B to make it pass through P tilts the

nontrivial intersection with the unit circle away from
_
AD. The result then follows.
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Theorem 3 is then a corollary of the above proposition.

If more algebraic topology is assumed, in particular, the existence of a simply-connected
covering space (see the discussion in the section titled The Classification of
Covering Spaces in [2]), and a stronger Riemann mapping theorem is assumed, namely
that D, C and Ĉ are all the simply-connected Riemann surfaces (Theorem 27.9 in [1]),
the existence of p may be argued by ruling out the possilibity that X is covered by C and
Ĉ. This approach is taken in Sections 27.10-13 in [1].
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