HOMEWORK IV (DEADLINE : 14ST JUNE, 2019)

I. Let $A=\left(\begin{array}{ccc}1 & 1 & 1 \\ 2 & 1 & -1 \\ -3 & 2 & 4\end{array}\right)$.
(a) Find a Jordan decomposition of A.
(b) Find the general solution to the O.D.E. $x^{\prime}(t)=A x(t)$.
II. Let $A=\left(\begin{array}{ccc}5 & -3 & -2 \\ 8 & -5 & -4 \\ -4 & 3 & 3\end{array}\right)$.
(a) Find a Jordan decomposition of A.
(b) Find the general solution to the O.D.E. $x^{\prime}(t)=A x(t)$.
III. (a) Let ω be a real number. Consider the initial value problem $y^{\prime \prime}+\omega^{2} y^{\prime}=0, y(0)=y_{0}, y_{1}(0)=y_{1}$. Let $x_{1}=y, x_{2}=y^{\prime}$. For $x=\binom{x_{1}}{x_{2}}, x^{\prime}=A x$. Find the matrix A and solve the initial value problem by finding $e^{t A}$.
(b) Find the general solution to the following O.D.E.

$$
x^{\prime}=\left(\begin{array}{cc}
2 & 3 \\
-1 & -2
\end{array}\right) x+\binom{e^{t}}{t} .
$$

V. Let $x_{1}=y, x_{2}=y^{\prime}$, then the second order equation

$$
y^{(2)}+p(t) y^{\prime}+q(t) y=0
$$

corresponds to the system

$$
\begin{align*}
& x_{1}^{\prime}=x_{2}, \\
& x_{2}^{\prime}=-q(t) x_{1}-p(t) x_{2} . \tag{2}
\end{align*}
$$

Show that if $\left\{y_{1}, y_{2}\right\}$ and $\left\{\phi_{1}, \phi_{2}\right\}$ are fundamental sets of equation (1) and (2), respectively, then

$$
W\left(y_{1}, y_{2}\right)(t)=c \hat{W}\left(\phi_{1}, \phi_{2}\right)(t)
$$

where c is a non-zero constant and W and \hat{W} denote the Wronskian functions given by $W\left(y_{1}, y_{2}\right)=\operatorname{det}\left(\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right)$ and $\hat{W}\left(\phi_{1}, \phi_{2}\right)=$ $\operatorname{det}\left(\phi_{1}, \phi_{2}\right)$.

