HOMEWORK III (DEADLINE : 7ST JUNE, 2019)

I. Find the solution to the following O.D.E. with given initial value.
(i) $y^{(3)}+y^{\prime}=\sec t, y(0)=2, y^{\prime}(0)=1, y^{(2)}(0)=-2$.
(ii) $y^{(4)}+2 y^{(2)}+y=\cos t, y(0)=2, y^{\prime}(0)=0, y^{(2)}(0)=-1$, $y^{(3)}(0)=1$.
(iii) $y^{(3)}-y^{(2)}+y^{\prime}-y=\sec t, y(0)=2, y^{\prime}(0)=-1, y^{(2)}(0)=1$.
(iv) $y^{(4)}-y^{(3)}-y^{(2)}+y^{\prime}=t^{2}+8+t \sin t, y(0)=1, y^{\prime}(0)=1$, $y^{(2)}(0)=1, y^{(3)}(0)=1$.
II. Find a formula involving integrals for a particular solution of the O.D.E.

$$
y^{(3)}-3 y^{(2)}+3 y^{\prime}-y=g(t) .
$$

If $g(t)=t^{-2} e^{t}$, determine $Y(t)$.
III. If $\varphi_{1}(t)$ is a solution to the O.D.E.

$$
y^{(3)}(t)+p_{2}(t) y^{(2)}(t)+p_{1}(t) y^{\prime}(t)+p_{0}(t) y(t)=0
$$

(i) Assume that $y(t)$ is a solution of the O.D.E. above. Use the substitution $y(t)=\varphi_{1}(t) v(t)$ to derive a second order O.D.E. for v^{\prime}.
(ii) Use (i) to find the general solution for the O.D.E.

$$
(2-t) y^{(3)}(t)+(2 t-3) y^{(2)}(t)-t y^{(1)}(t)+y(t)=0
$$

for $t<2$ provided that $\varphi_{1}(t)=e^{t}$ is a solution.
IV. Let $\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$ be a collection of solutions of the O.D.E.
$y^{(n)}(t)+p_{n-1}(t) y^{(n-1)}(t)+\cdots+p_{1}(t) y^{\prime}(t)+p_{0}(t) y(t)=0$,
where $p_{j}(t)$ is continuous on some interval I. Assume that $\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$ is linearly independent on I. Snow that

$$
W\left(\varphi_{1}, \ldots, \varphi_{n}\right)(t) \neq 0, \quad \text { for every } t \in I
$$

Hint: Using the fact that there is a fundamental set of the O.D.E. above.
V. Let r_{1}, r_{2} be two distinct real numbers, let a, b be real numbers with $b \neq 0$. Show that the collection of functions

$$
\left\{e^{r_{1} t}, t e^{r_{2}}, t^{2} e^{r_{2}}, e^{a t} \cos b t, e^{a t} \sin b t\right\}
$$

are linearly independent.

