HOMEWORK II (DEADLINE : 31ST MAY, 2019)

I. Find the general solution to the following O.D.E.
(i) $y^{\prime \prime}+8 y^{\prime}-9 y=0$.
(ii) $y^{\prime \prime}+4 y^{\prime}+4 y=0$.
(iii) $y^{\prime \prime}+5 y^{\prime}+8 y=0$.
II. (i) If the Wronskian of any two solutions of $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=$ 0 is constant, what does this imply about the coefficients $p(t)$ and $q(t)$?
(ii) If f, g and h are differential functions, show that $W(f g, f h)=$ $f^{2} W(g, h)$.
III. Find the Wroskian of the two solutions of the following O.D.E. without solving the O.D.E.
(i) $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-v^{2}\right) y=0$, where v is a constant (Bessel's equation).
(ii) $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\alpha(\alpha+1) y=0$, where α is a constant (Legendre's equation).
IV. In the following O.D.E., find a second independent solution of the given O.D.E.
(i) $t^{2} y^{\prime \prime}+3 t y^{\prime}+y=0, t>0 ; y_{1}(t)=t^{-1}$.
(ii) $(x-1) y^{\prime \prime}-x y^{\prime}+y=0, x>1 ; \quad y_{1}(x)=e^{x}$.
V. Find the general solution to the following O.D.E.
(i) $y^{\prime \prime}+3 y^{\prime}+2 y=e^{t}\left(t^{2}+1\right) \sin 2 t+3 e^{-t} \cos t+6 e^{t}$.
(ii) $y^{\prime \prime}+2 y^{\prime}+5 y=3 t e^{-t} \cos 2 t-2 t e^{-2 t} \cos t$.

