HOMEWORK I (DEADLINE : 24ST MAY, 2019)

I. Solve the following initial value problems:
(i) $t^{4} y^{\prime}+5 t^{3} y=e^{-t}, y(-1)=0$, for $t<0$.
(ii) $($ sint $) y^{\prime}+($ cost $) y=2 e^{t}, y(1)=a, 0<t<\pi$.
II. Solve the initial value problem

$$
y^{\prime}=\frac{1+3 x^{2}}{3 y^{2}-12 y}, \quad y(0)=1
$$

and determine the interval in which the solution is valid.
III. Solve the following O.D.E.
(i)

$$
\frac{d y}{d x}=\frac{a y+b}{c y+d},
$$

where a, b, c, d are constants.
(ii) $y+\left(2 t-3 y e^{y}\right) y^{\prime}=0, y(1)=0$.
IV. Determine whether each of the following equations is exact. If it is exact, find the solution.
(i) $\left(e^{x} \sin y-3 y \sin x\right)+\left(e^{x} \cos y+3 \cos x\right) y^{\prime}=0$.
(ii) $(x \log y+x y)+(y \log x+x y) y^{\prime}=0, x>0, y>0$.
(iii) $\frac{x}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}+\frac{y}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}} \frac{d y}{d x}=0$.
V. Show that if $\frac{\left(N_{x}-M_{y}\right)}{(x M-y N)}=R$, where R depends on the quantity $x y$ only, then the differential equation

$$
M+N y^{\prime}=0
$$

has an integrating factor of the form $\mu(x y)$. Fin a general formula for this integrating factor.

