ORDINARY DIFFERENTIAL EQUATIONS: MIDTERM EXAMINATION

I. (a) Solve the O.D.E. $y^{\prime}(t)=\frac{3 t^{2}}{3 y^{2}(t)-6}$ with initial condition $y(1)=0 .(7 \mathrm{pt})$
(b) Solve the O.D.E. $\left(3 y+2 x y^{2}\right)+\left(x+2 x^{2} y\right) \frac{d y}{d x}=0$ with initial condition $y(1)=1$. (Hint: An integrating factor of the O.D.E. is of the form $h(x y)$, for some continuous function h). (8 pts)
(c) Solve the O.D.E. $4 y^{\prime \prime}(t)-4 y^{\prime}(t)+y(t)=8 e^{\frac{t}{2}}$. (7 pts)
II. Use the method of reduction of order to find the general solution to the following O.D.E.
$(\sin t) y^{\prime \prime}-(\sin t+\cos t) y^{\prime}+(\cos t) y=0, \quad 0<t<\pi$,
provided that one solution $y=\varphi_{1}(t) y=e^{t}$ is given. (8 pts)
Find the general solution to the O.D.E.

$$
\left(t^{2}-2 t+2\right) y^{(3)}(t)-t^{2} y^{(2)}(t)+2 t y^{\prime}(t)-2 y(t)=0
$$

given two of the solutions $y=\varphi_{1}(t)=e^{t}$ and $y=\varphi_{2}(t)=t$. (12 pts)
(H) (a) Let $\left\{\varphi_{1}(t), \varphi_{2}(t), \ldots, \varphi_{n}(t)\right\}$ be a linear independent set of n-times continuously differentiable functions on an open interval $I \subset \mathbb{R}$. Show that there exists a set of continuous functions $\left\{p_{n-1}(t), \ldots, p_{1}(t), p_{0}(t)\right\}$ on I such that

$$
\varphi_{j}^{(n)}(t)+p_{n-1}(t) \varphi_{j}^{(n-1)}(t)+\cdots+p_{1}(t) \varphi_{j}^{\prime}(t)+p_{0}(t) \varphi_{j}(t)=0
$$

on I, for every $j=1, \ldots, n$.
(10 pts)
(b) Find a second order linear O.D.E that has $\left\{e^{t}, \sin t\right\}$ as a fundamental set. (7 pts)
IV. Let $A=\left(\begin{array}{cccc}0 & -3 & 1 & 2 \\ -2 & 1 & -1 & 2 \\ -2 & 1 & -1 & 2 \\ -2 & -3 & 1 & 4\end{array}\right)$.
(a) Find a Jordan decomposition of A. (8 pts)
(b) Find the general solution to the O.D.E. $x^{\prime}(t)=A x(t)$. (8 pts)
V. Let $P(t)=\frac{1}{t}\left(\begin{array}{cc}5 & 3 \\ -1 & 1\end{array}\right), t>0$.
(a) Check that $\Psi(t)=\left(\begin{array}{cc}3 t^{4} & t^{2} \\ -t^{4} & -t^{2}\end{array}\right)$ is a fundamental matrix of the homogeneous O.D.E. $x^{\prime}(t)=P(t) x(t)$ for $t>0$. (5 pts)
(b) Find the general solution of the O.D.E. $x^{\prime}(t)=P(t) x+f(t)$, $t>0$, where $f(t)=\binom{4 t^{4}}{0} \cdot(10 \mathrm{pts})$
VI. Let $x_{1}=y, x_{2}=y^{\prime}, x_{3}=y^{\prime \prime}$, then the third order equation

$$
\begin{equation*}
y^{(3)}+p(t) y^{\prime \prime}+q(t) y^{\prime}+r(t) y=0 \tag{1}
\end{equation*}
$$

corresponds to the system

$$
\begin{aligned}
& x_{1}^{\prime}=x_{2}, \\
& x_{2}^{\prime}=x_{3}, \\
& x_{3}^{\prime}=-r(t) x_{1}-q(t) x_{2}-p(t) x_{3} .
\end{aligned}
$$

Show that if $\left\{y_{1}, y_{2}, y_{3}\right\}$ and $\left\{\phi_{1}, \phi_{2}, \phi_{3}\right\}$ are fundamental sets of equation (1) and (2), respectively, then

$$
W\left(y_{1}, y_{2}, y_{3}\right)(t)=c \hat{W}\left(\phi_{1}, \phi_{2}, \phi_{3}\right)(t),
$$

where c is a non-zero constant and W and \hat{W} denote the Wronskian functions given by $W\left(y_{1}, y_{2}, y_{3}\right)=\operatorname{det}\left(\begin{array}{ccc}y_{1} & y_{2} & y_{3} \\ y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} \\ y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime}\end{array}\right)$ and $\hat{W}\left(\phi_{1}, \phi_{2}, \phi_{3}\right)=\operatorname{det}\left(\phi_{1}, \phi_{2}, \phi_{3}\right) .(10 \mathrm{pts})$

