Tutorial 11 for MATH3270a

Rong ZHANG*

November 29, 2018

In this tutorial, we will use an example to illustrate how to solve a $1^{\text {st }}$ order nonlinear system. Consider the following system

$$
\begin{aligned}
& \frac{d x}{d t}=(2+x)(y-x), \\
& \frac{d y}{d t}=(4-x)(y+x) ;
\end{aligned}
$$

1. Find all the critical points of the system.

Let $F=(2+x)(y-x), G=(4-x)(y+x)$, then by solving

$$
\begin{aligned}
& F=0, \\
& G=0,
\end{aligned}
$$

we find all critical points $P_{1}=(0,0), P_{2}=(-2,2), P_{3}=(4,4)$.
2. Draw the direction field of the system.

3. Find the corresponding linear system near each critial points.

Compute

$$
\frac{d(F, G)}{d(x, y)}=\left(\begin{array}{ll}
y-2 x-2 & 2+x \\
4-y-2 x & 4-x
\end{array}\right)
$$

so the correponding linear system near each critical point is given by

$$
\frac{d}{d t}\binom{x}{y}=A\left(P_{i}\right)\binom{x}{y}
$$

[^0]where
\[

A\left(P_{1}\right)=\left($$
\begin{array}{cc}
-2 & 2 \\
4 & 4
\end{array}
$$\right), \quad A\left(P_{2}\right)=\left($$
\begin{array}{ll}
4 & 0 \\
6 & 6
\end{array}
$$\right), \quad A\left(P_{3}\right)=\left($$
\begin{array}{ll}
-6 & 6 \\
-8 & 0
\end{array}
$$\right)
\]

4. Determine the type and stability of each critical points;

The eigenvalues of $A\left(P_{1}\right)$ are $\lambda_{1}=1-\sqrt{17}<0, \lambda_{1}=1+\sqrt{17}>0$, so the critical point $P_{1}=(0,0)$ is a saddle point and unstable. Moreover, the corresponding eigenvectors are

$$
r_{1}=\binom{2}{3-\sqrt{17}}, \quad r_{2}=\binom{2}{3+\sqrt{17}} .
$$

The eigenvalues of $A\left(P_{2}\right)$ are $\lambda_{1}=4, \lambda_{2}=6$, so the critical point $P_{2}=(-2,2)$ is a node and unstable. Moreover, the corresponding eigenvectors are

$$
r_{1}=\binom{1}{-3}, \quad r_{2}=\binom{0}{1} .
$$

The eigenvalues of $A\left(P_{3}\right)$ are $\lambda=-3 \pm \sqrt{39} i$, so the critical point $P_{3}=(4,4)$ is a spirial point and stable. Note that the direction at point $(5,4)$ is $\binom{-6}{-40}$, so the trajectory around $P_{3}=(4,4)$ moves in clockwise direction to P_{3}.
5. Draw the phase portrait.

[^0]: *Any questions on tutorial notes, please email me at rzhang@math.cuhk.edu.hk

