MATH 3270A Tutorial 8

Alan Yeung Chin Ching

1st November 2018

1 Sturm-Picone Comparison Theorem and its applications

Theorem 1 (Sturm-Picone Comparison Theorem). Let $0<\alpha_{1}(x) \leq \alpha_{2}(x)$ and $\beta_{2}(x) \leq \beta_{1}(x)$ be continuous functions on (a, b). Let y_{1} and y_{2} be solutions to the ODEs

$$
\begin{aligned}
& \left(\alpha_{1}(x) y_{1}^{\prime}(x)\right)^{\prime}+\beta_{1}(x) y_{1}(x)=0 \\
& \left(\alpha_{2}(x) y_{2}^{\prime}(x)\right)^{\prime}+\beta_{2}(x) y_{2}(x)=0
\end{aligned}
$$

such that they are linearly independent. Then, between any consecutive zeros x_{1}, x_{2} of y_{2}, there exists at least one zero of y_{1}.
Proof. Taking the difference between the product of the first equation and y_{2} and the product of the second equation and y_{1} gives

$$
\begin{equation*}
\left(\alpha_{2} y_{1} y_{2}^{\prime}-\alpha_{1} y_{1}^{\prime} y_{2}\right)^{\prime}=\alpha_{2} y_{1}^{\prime} y_{2}-\alpha_{1} y_{1} y_{2}^{\prime}+\left(\beta_{1}-\beta_{2}\right) y_{1} y_{2} \tag{1}
\end{equation*}
$$

Let $x_{1}<x_{2}$ be consecutive zeros of y_{2} and suppose there were no zeros of y_{1} on $\left(x_{1}, x_{2}\right)$. Then we have, by (1),

$$
\begin{equation*}
\left(\frac{y_{2}}{y_{1}}\left(\alpha_{2} y_{2}^{\prime} y_{1}-\alpha_{1} y_{2} y_{1}^{\prime}\right)\right)^{\prime}=\left(\beta_{1}-\beta_{2}\right) y_{2}^{2}+\left(\alpha_{2}-\alpha_{1}\right) y_{2}^{\prime 2}+\alpha_{2}\left(y_{2}^{\prime}-y_{1}^{\prime} \frac{y_{2}}{y_{1}}\right)^{2} \geq 0 \tag{2}
\end{equation*}
$$

on (x_{1}, x_{2}). Integrating the equality gives
$0=\left.\frac{y_{2}}{y_{1}}\left(\alpha_{2} y_{2}^{\prime} y_{1}-\alpha_{1} y_{2} y_{1}^{\prime}\right)\right|_{x_{1}} ^{x_{2}}=\lim _{x \rightarrow x_{2}}\left(\frac{y_{2}}{y_{1}}\left(\alpha_{2} y_{2}^{\prime} y_{1}-\alpha_{1} y_{2} y_{1}^{\prime}\right)\right)-\lim _{x \rightarrow x_{1}}\left(\frac{y_{2}}{y_{1}}\left(\alpha_{2} y_{2}^{\prime} y_{1}-\alpha_{1} y_{2} y_{1}^{\prime}\right)\right) \geq 0$
This implies the RHS of (2) is identically zero, contradicting to the linear independence of y_{1} and y_{2}.

Here we present two applications of the theorem. The first one extends Theorem 2 in Tutorial 7.
Example 1. Let $p(x) \geq 0, q(x) \leq 0$ be continuous functions on (a, b). Show that a non-trivial solution the following ODE has at most one zero.

$$
y^{\prime \prime}(x)+p(x) y^{\prime}(x)+q(x) y(x)=0
$$

Solution

Let y be a non-trivial solution. Suppose on the contrary that y has two zeros $x_{1}<x_{2}$. We may rewrite the equation as

$$
\begin{equation*}
\left(\alpha(x) y^{\prime}(x)\right)^{\prime}+\beta(x) y=0 \tag{3}
\end{equation*}
$$

where $\alpha(x)=e^{\int_{0}^{x} p(s) d s} \geq 1$ and $\beta(x)=\alpha(x) q(x) \leq 0$ Consider the equation

$$
\begin{equation*}
y^{\prime \prime}(x)=0 \tag{4}
\end{equation*}
$$

By Sturm-Picone Comparison Theorem, for each solution y_{2} of (4), there exists a $x_{0} \in\left(x_{1}, x_{2}\right)$ of (4) such that $y_{2}\left(x_{0}\right)=0$. This is a contradiction since a non-zero constant could be a solution to (4).

Example 2. Let y be a solution of

$$
y^{\prime \prime}+(2+\sin x) y=0
$$

Show that there exists infinitely many zeros of y and the difference between any two consecutive zeros of y is less than π.

Solution

Consider the following equation

$$
\begin{equation*}
w^{\prime \prime}+w=0 \tag{5}
\end{equation*}
$$

Note that $w=\sin (x-C)$ is a solution of the (5). By Sturm-Picone Comparison Theorem, any solutions of the original equation has at least one zero on $(k \pi+C,(k+1) \pi+C)$ for all $k \in \mathbb{N}$ and $C \in \mathbb{R}$.

2 Jacobi's formula

Theorem 2. Let $A(t)$ be a matrix-valued function depending smoothly on $t \in(a, b)$. Then,

$$
\frac{d}{d t} \operatorname{det} A(t)=\operatorname{det} A(t) \operatorname{tr}\left(A^{-1} \frac{d A}{d t}\right)
$$

Proof. Note that by the formula of Laplace 's expansion, we have

$$
\frac{\partial \operatorname{det}(A)}{\partial a_{i j}}=(\operatorname{cof}(A))_{i j}
$$

Hence, by Chain Rule, we have

$$
\begin{aligned}
\frac{d}{d t} \operatorname{det} A(t) & =\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial \operatorname{det}(A)}{\partial a_{i j}} \frac{d a_{i j}}{d t} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n}(\operatorname{cof}(A))_{i j} \frac{d a_{i j}}{d t} \\
& =(\operatorname{cof}(A)): \frac{d A}{d t} \\
& =\operatorname{tr}\left((\operatorname{cof}(A))^{T} \frac{d A}{d t}\right) \\
& =\operatorname{det} A(t) \operatorname{tr}\left(A^{-1} \frac{d A}{d t}\right)
\end{aligned}
$$

