MATH 3270A Tutorial 7

Alan Yeung Chin Ching

25th October 2018

Theorem 1 (Sturm's Separation Theorem). Let y_1 , y_2 be two linearly independent solutions of the ODE

$$y''(x) + p(x)y'(x) + q(x)y(x) = 0$$
(1)

with p(x) and q(x) continuous on (a, b). Then, between any consecutive zeros x_1 , x_2 of y_1 , there exists exactly one zero of y_2 .

Proof. Please refer to the solution of the mid-term.

Theorem 2. If $p(x), q(x) \leq 0$, then a non-trivial solution of (1) has at most one zero.

Proof. We can always rewrite (1) into the following form:

$$(\alpha(x)y'(x))' + \beta(x)y = 0 \tag{2}$$

with $\alpha(x) = e^{\int_0^x p(s)ds} > 0$ and $\beta(x) = \alpha(x)q(x)$. Let y be a non-trivial solution of (2) and suppose there were two zeros $x_1 < x_2$ of y. Without loss of generality, we may suppose y > 0 on (x_1, x_2) . Then, by integrating (2), we have

where the fact $0 < \alpha(x_2) \leq \alpha(x_1)$ has been used in the last step. We have arrived at a contradiction, since $y'(x_2) < 0 < y'(x_1)$ as x_1, x_2 are consecutive zeros and y > 0 on (x_1, x_2) . \Box

Theorem 3 (Sturm-Picone Comparison Theorem). Let $0 < \alpha_1(x) \le \alpha_2(x)$ and $\beta_2(x) \le \beta_1(x)$ be continuous functions on (a, b). Let y_1 and y_2 be solutions to the ODEs

$$(\alpha_1(x)y_1'(x))' + \beta_1(x)y_1(x) = 0(\alpha_2(x)y_2'(x))' + \beta_2(x)y_2(x) = 0$$

such that they are linearly independent. Then, between any consecutive zeros x_1 , x_2 of y_2 , there exists at least one zero of y_1 .

Proof. Taking the difference between the product of the first equation and y_2 and the product of the second equation and y_1 gives

$$(\alpha_2 y_1 y_2' - \alpha_1 y_1' y_2)' = \alpha_2 y_1' y_2 - \alpha_1 y_1 y_2' + (\beta_1 - \beta_2) y_1 y_2$$
(3)

Let $x_1 < x_2$ be consecutive zeros of y_2 and suppose there were no zeros of y_1 on (x_1, x_2) . Then we have, by (3),

$$\left(\frac{y_2}{y_1}\left(\alpha_2 y_2' y_1 - \alpha_1 y_2 y_1'\right)\right)' = (\beta_1 - \beta_2) y_2^2 + (\alpha_2 - \alpha_1) y_2'^2 + \alpha_2 \left(y_2' - y_1' \frac{y_2}{y_1}\right)^2 \ge 0$$
(4)

on (x_1, x_2) . Integrating the equality gives

$$0 = \frac{y_2}{y_1} \left(\alpha_2 y_2' y_1 - \alpha_1 y_2 y_1' \right) \Big|_{x_1}^{x_2} = \lim_{x \to x_2} \left(\frac{y_2}{y_1} \left(\alpha_2 y_2' y_1 - \alpha_1 y_2 y_1' \right) \right) - \lim_{x \to x_1} \left(\frac{y_2}{y_1} \left(\alpha_2 y_2' y_1 - \alpha_1 y_2 y_1' \right) \right) \ge 0$$

This implies the RHS of (4) is identically zero, contradicting to the linear independence of y_1 and y_2 .