MATH 3270A Tutorial 7

Alan Yeung Chin Ching

25th October 2018

Theorem 1 (Sturm's Separation Theorem). Let y_{1}, y_{2} be two linearly independent solutions of the ODE

$$
\begin{equation*}
y^{\prime \prime}(x)+p(x) y^{\prime}(x)+q(x) y(x)=0 \tag{1}
\end{equation*}
$$

with $p(x)$ and $q(x)$ continuous on (a, b). Then, between any consecutive zeros x_{1}, x_{2} of y_{1}, there exists exactly one zero of y_{2}.
Proof. Please refer to the solution of the mid-term.
Theorem 2. If $p(x), q(x) \leq 0$, then a non-trivial solution of (1) has at most one zero.
Proof. We can always rewrite (1) into the following form:

$$
\begin{equation*}
\left(\alpha(x) y^{\prime}(x)\right)^{\prime}+\beta(x) y=0 \tag{2}
\end{equation*}
$$

with $\alpha(x)=e^{\int_{0}^{x} p(s) d s}>0$ and $\beta(x)=\alpha(x) q(x)$. Let y be a non-trivial solution of (2) and suppose there were two zeros $x_{1}<x_{2}$ of y. Without loss of generality, we may suppose $y>0$ on (x_{1}, x_{2}). Then, by integrating (2), we have

$$
\begin{array}{rlrl}
& \left.\alpha(x) y^{\prime}(x)\right|_{x_{1}} ^{x_{2}} & =-\int_{x_{1}}^{x_{2}} \beta(x) y(x) d x>0 \\
\Longrightarrow \quad \alpha\left(x_{2}\right) y^{\prime}\left(x_{2}\right) & >\alpha\left(x_{1}\right) y^{\prime}\left(x_{1}\right) \\
\Longrightarrow \quad y^{\prime}\left(x_{2}\right) & >y^{\prime}\left(x_{1}\right)
\end{array}
$$

where the fact $0<\alpha\left(x_{2}\right) \leq \alpha\left(x_{1}\right)$ has been used in the last step. We have arrived at a contradiction, since $y^{\prime}\left(x_{2}\right)<0<y^{\prime}\left(x_{1}\right)$ as x_{1}, x_{2} are consecutive zeros and $y>0$ on (x_{1}, x_{2}).
Theorem 3 (Sturm-Picone Comparison Theorem). Let $0<\alpha_{1}(x) \leq \alpha_{2}(x)$ and $\beta_{2}(x) \leq \beta_{1}(x)$ be continuous functions on (a, b). Let y_{1} and y_{2} be solutions to the ODEs

$$
\begin{aligned}
\left(\alpha_{1}(x) y_{1}^{\prime}(x)\right)^{\prime}+\beta_{1}(x) y_{1}(x) & =0 \\
\left(\alpha_{2}(x) y_{2}^{\prime}(x)\right)^{\prime}+\beta_{2}(x) y_{2}(x) & =0
\end{aligned}
$$

such that they are linearly independent. Then, between any consecutive zeros x_{1}, x_{2} of y_{2}, there exists at least one zero of y_{1}.
Proof. Taking the difference between the product of the first equation and y_{2} and the product of the second equation and y_{1} gives

$$
\begin{equation*}
\left(\alpha_{2} y_{1} y_{2}^{\prime}-\alpha_{1} y_{1}^{\prime} y_{2}\right)^{\prime}=\alpha_{2} y_{1}^{\prime} y_{2}-\alpha_{1} y_{1} y_{2}^{\prime}+\left(\beta_{1}-\beta_{2}\right) y_{1} y_{2} \tag{3}
\end{equation*}
$$

Let $x_{1}<x_{2}$ be consecutive zeros of y_{2} and suppose there were no zeros of y_{1} on $\left(x_{1}, x_{2}\right)$. Then we have, by (3),

$$
\begin{equation*}
\left(\frac{y_{2}}{y_{1}}\left(\alpha_{2} y_{2}^{\prime} y_{1}-\alpha_{1} y_{2} y_{1}^{\prime}\right)\right)^{\prime}=\left(\beta_{1}-\beta_{2}\right) y_{2}^{2}+\left(\alpha_{2}-\alpha_{1}\right) y_{2}^{\prime 2}+\alpha_{2}\left(y_{2}^{\prime}-y_{1}^{\prime} \frac{y_{2}}{y_{1}}\right)^{2} \geq 0 \tag{4}
\end{equation*}
$$

on (x_{1}, x_{2}). Integrating the equality gives
$0=\left.\frac{y_{2}}{y_{1}}\left(\alpha_{2} y_{2}^{\prime} y_{1}-\alpha_{1} y_{2} y_{1}^{\prime}\right)\right|_{x_{1}} ^{x_{2}}=\lim _{x \rightarrow x_{2}}\left(\frac{y_{2}}{y_{1}}\left(\alpha_{2} y_{2}^{\prime} y_{1}-\alpha_{1} y_{2} y_{1}^{\prime}\right)\right)-\lim _{x \rightarrow x_{1}}\left(\frac{y_{2}}{y_{1}}\left(\alpha_{2} y_{2}^{\prime} y_{1}-\alpha_{1} y_{2} y_{1}^{\prime}\right)\right) \geq 0$
This implies the RHS of (4) is identically zero, contradicting to the linear independence of y_{1} and y_{2}.

