MATH 3270A Tutorial 5

Alan Yeung Chin Ching

11th October 2018

1 The method of variation of parameters

Theorem 1 (The method of variation of parameters). Consider the ODE

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x) \tag{1}
\end{equation*}
$$

where $p(x), q(x)$ and $f(x)$ are continuous functions on (a, b). Let $\left\{y_{1}, y_{2}\right\}$ be a set of fundamental solution of the corresponding homogeneous equation of (1). Then, a particular solution is given by

$$
y_{p}(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)
$$

with

$$
u_{1}(x)=-\int \frac{y_{2}(x) f(x)}{W\left(y_{1}, y_{2}\right)(x)} d x \quad u_{2}(x)=\int \frac{y_{1}(x) f(x)}{W\left(y_{1}, y_{2}\right)(x)} d x
$$

Exercise. Verify the above theorem.
Example 1. Find the general solutions of the following ODE.

$$
y^{\prime \prime}+y=\tan x
$$

Solution

Note that $y_{1}=\sin x$ and $y_{2}=\cos x$ are two fundamental solutions of the homogeneous equation. We compute

$$
W\left(y_{1}, y_{2}\right)=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
\sin x & \cos x \\
\cos x & -\sin x
\end{array}\right|=-1
$$

Hence,

$$
\begin{aligned}
u_{1}(x) & =-\int \frac{y_{2}(x) f(x)}{W\left(y_{1}, y_{2}\right)(x)} d x=\int(\cos x \tan x) d x=\int \sin x d x=-\cos x+C_{1} \\
u_{2}(x) & =\int \frac{y_{1}(x) f(x)}{W\left(y_{1}, y_{2}\right)(x)} d x=-\int(\sin x \tan x) d x=-\int\left(\sin ^{2} x \sec x\right) d x \\
& =\int\left(\cos ^{2} x \sec x\right) d x-\int \sec x d x=\sin x-\ln |\sec x+\tan x|+C
\end{aligned}
$$

As a result, one particular solution is given by

$$
y_{p}(x)=u_{1}(x) y_{x}(x)+u_{2}(x) y_{2}(x)=-\cos x \log |\sec x+\tan x|
$$

The general solutions are given by $C_{1} \cos x+C_{2} \sin x-\cos x \log |\sec x+\tan x|$

Example 2. Find the general solution of the following ODE.

$$
x^{2} y^{\prime \prime}-2 y=3 x^{2}-1, \quad x>0
$$

Solution

Note that $y_{1}=x^{2}$ and $y_{2}=\frac{1}{x}$ are two fundamental solutions of the homogeneous equation. We compute

$$
W\left(y_{1}, y_{2}\right)=\left|\begin{array}{cc}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
x^{2} & \frac{1}{x} \\
2 x & -\frac{1}{x^{2}}
\end{array}\right|=-3
$$

Note that in order to apply Theorem 1, we have to rewrite the ODE as

$$
y^{\prime \prime}-\frac{2}{x^{2}} y=3-\frac{1}{x^{2}}
$$

Hence,

$$
\begin{aligned}
& u_{1}(x)=-\int \frac{y_{2}(x) f(x)}{W\left(y_{1}, y_{2}\right)(x)} d x=\int\left(\frac{1}{x}-\frac{1}{3 x^{3}}\right) d x=\log x+\frac{1}{6 x^{2}}+C \\
& u_{2}(x)=\int \frac{y_{1}(x) f(x)}{W\left(y_{1}, y_{2}\right)(x)} d x=-\int \frac{x^{2}\left(3-\frac{1}{x^{2}}\right)}{3} d x=-\frac{1}{3} \int\left(3 x^{2}-1\right) d x=-\frac{x^{3}}{3}+\frac{x}{3}+C
\end{aligned}
$$

As a result, one particular solution is given by

$$
y_{p}(x)=u_{1}(x) y_{x}(x)+u_{2}(x) y_{2}(x)=x^{2} \log x+\frac{1}{2}
$$

The general solutions are given by $C_{1} x^{2}+C_{2} \frac{1}{x}+x^{2} \log x+\frac{1}{2}$
Example 3 (Duhamel's Principle). Let $p(x), q(x)$ and $f(x)$ be continuous functions on (a, b) with $a<0<b$. Let $y(x)$ be the solution of the following IVP.

$$
\left\{\begin{array}{rlc}
y^{\prime \prime}(x)+p(x) y^{\prime}(x)+q(x) y(x) & =f(x) \tag{2}\\
y(0) & =\alpha \\
y^{\prime}(0) & =\beta
\end{array}\right.
$$

Let $\hat{y}(x)$ and $y_{s}(x)$ be the solutions of the following IVPs for all $a<s<b$ respectively.

$$
\begin{gathered}
\left\{\begin{aligned}
\hat{y}^{\prime \prime}(x)+p(x) \hat{y}^{\prime}(x)+q(x) \hat{y}(x) & =0 \\
\hat{y}(0) & =\alpha \\
\hat{y}^{\prime}(0) & =\beta
\end{aligned}\right. \\
\left\{\begin{array}{rll}
y_{s}^{\prime \prime}(x)+p(x) y_{s}^{\prime}(x)+q(x) y_{s}(x) & =0 \\
y_{s}(s) & = & 0 \\
y_{s}^{\prime}(s) & = & f(s)
\end{array}\right.
\end{gathered}
$$

Show that

$$
y(x)=\hat{y}(x)+\int_{0}^{x} y_{s}(x) d s
$$

Consequently, give an alternative proof of Theorem 1.

Solution

Let $Y(x)=\hat{y}(x)+\int_{0}^{x} y_{s}(x) d s$. By uniqueness, it suffices to show that $Y(x)$ is also a solution of (2). We compute that

$$
\begin{aligned}
Y^{\prime}(x) & =\hat{y}^{\prime}(x)+\frac{d}{d x} \int_{0}^{x} y_{s}(x) d s \\
& =\hat{y}^{\prime}(x)+\underbrace{y_{x}(x)}_{=0}+\int_{0}^{x} y_{s}^{\prime}(x) d s=\hat{y}^{\prime}(x)+\int_{0}^{x} y_{s}^{\prime}(x) d s \\
Y^{\prime \prime}(x) & =\hat{y}^{\prime \prime}(x)+\frac{d}{d x} \int_{0}^{x} y_{s}^{\prime}(x) d s \\
& =\hat{y}^{\prime \prime}(x)+y_{x}^{\prime}(x)+\int_{0}^{x} y_{s}^{\prime \prime}(x)=\hat{y}^{\prime \prime}(x)+f(x)+\int_{0}^{x} y_{s}^{\prime \prime}(x)
\end{aligned}
$$

$$
\begin{aligned}
& Y^{\prime \prime}(x)+p(x) Y^{\prime}(x)+q(x) Y(x) \\
& =\left(\hat{y}^{\prime \prime}(x)+f(x)+\int_{0}^{x} y_{s}^{\prime \prime}(x)\right)+p(x)\left(\hat{y}^{\prime}(x)+\int_{0}^{x} y_{s}^{\prime}(x) d s\right)+q(x)\left(\hat{y}(x)+\int_{0}^{x} y_{s}(x) d s\right) \\
& =f(x)+\left(\hat{y}^{\prime \prime}(x)+p(x) \hat{y}^{\prime}(x)+q(x) \hat{y}(x)\right)+\int_{0}^{x}\left(y_{s}^{\prime \prime}(x)+p(x) y_{s}^{\prime}(x)+q(x) y_{s}(x)\right) d s \\
& =f(x)
\end{aligned}
$$

Clearly, we also have

$$
\begin{aligned}
Y(0) & =\hat{y}(0)+\int_{0}^{0} y_{s}(0) d s=\alpha \\
Y^{\prime}(0) & =\hat{y}^{\prime}(0)+\int_{0}^{0} y_{s}^{\prime}(0) d s=\beta
\end{aligned}
$$

Hence, we have $Y(x)=y(x)$ for all $x \in(a, b)$.
To prove Theorem 1, let $\left\{y_{1}, y_{2}\right\}$ be a set of fundamental solutions. We want to find C_{1}^{s}, C_{2}^{s} such that $y_{s}=C_{1}^{s} y_{1}+C_{2}^{s} y_{2}$. This can be done by solving the following system.

$$
\left\{\begin{array}{l}
C_{1}^{s} y_{1}(s)+C_{2}^{s} y_{2}(s)=0 \\
C_{1}^{s} y_{1}^{\prime}(s)+C_{2}^{s} y_{2}^{\prime}(s)=f(s)
\end{array}\right.
$$

Hence, we have

$$
C_{1}^{s}=-\frac{f(s) y_{2}(s)}{W\left(y_{1}, y_{2}\right)(s)} \quad C_{2}^{s}=\frac{f(s) y_{1}(s)}{W\left(y_{1}, y_{2}\right)(s)}
$$

Finally, we note that one particular solution is then given by (taking $\alpha=\beta=0$)

$$
\begin{aligned}
y(x) & =\int_{0}^{x} y_{s}(x) d s \\
& =\int_{0}^{x}\left(C_{1}^{s} y_{1}(x)+C_{2}^{s} y_{2}(x)\right) d s \\
& =\left(\int_{0}^{x}-\frac{f(s) y_{2}(s)}{W\left(y_{1}, y_{2}\right)(s)} d s\right) y_{1}(x)+\left(\int_{0}^{x} \frac{f(s) y_{1}(s)}{W\left(y_{1}, y_{2}\right)(s)} d s\right) y_{2}(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)
\end{aligned}
$$

