MATH 3270A Tutorial 4

Alan Yeung Chin Ching

4th October 2018

1 The Method of Undetermined Coefficients

Consider the following ODE with constant-coefficients.

$$
a y^{\prime \prime}+b y^{\prime}+c y=r(x)
$$

We may use the following table to find a particular solution, provided that y_{p} is not a homogeneous solution. The method is due to the observation that the derivatives of $r(x)$ of any orders have a general form.

$r(x)$	y_{p}
$A e^{\alpha x}$	$a e^{\alpha x}$
$A_{0}+A_{1} x+\cdots+A_{l} x^{l}$	$a_{0}+a_{1} x+\cdots+a_{l} x^{l}$
$A \cos \alpha x+B \sin \alpha x$	$a \cos \alpha x+b \sin \alpha x$
$e^{\alpha x}\left(A_{0}+A_{1} t+\cdots+A_{l} t^{l}\right)$	$e^{\alpha x}\left(a_{0}+a_{1} t+\cdots+a_{l} t^{l}\right)$
$e^{\alpha x}(A \cos \alpha x+B \sin \alpha x)$	$e^{\alpha x}(a \cos \alpha x+b \sin \alpha x)$

Example 1. Find the general solutions of the following ODE.

$$
2 y^{\prime \prime}+11 y^{\prime}-21 y=55 e^{4 x}
$$

Solution

We first solve the corresponding homogeneous equations and we have the homogeneous solutions are given by

$$
C_{1} e^{\frac{3}{2} x}+C_{2} e^{-7 x}
$$

Note that $e^{4 x}$ is not a homogeneous solutions, we may suppose $y=A e^{4 x}$ is a particular solution of the equations and we solve $A=1$. Hence, the general solutions are given by

$$
y=e^{4 x}+C_{1} e^{\frac{3}{2} x}+C_{2} e^{-7 x}
$$

Example 2. Find the general solutions of the following ODE.

$$
y^{\prime \prime}+4 y^{\prime}-21 y=e^{3 x}
$$

Solution

We first solve the corresponding homogeneous equations and we have the homogeneous solutions are given by

$$
C_{1} e^{-7 x}+C_{2} e^{3 x}
$$

Note that $e^{3 x}$ is a homogeneous solution. Hence, we should look for solution that has the from $A x e^{3 x}$. We then calculate that $A=\frac{1}{10}$. Hence, the general solutions are given by

$$
y(x)=C_{1} e^{-7 x}+C_{2} e^{3 x}+\frac{1}{10} x e^{3 x}
$$

Example 3. Find the general solutions of the following ODE.

$$
y^{\prime \prime}+y=\sin x+\cos x
$$

Solution

We first solve the corresponding homogeneous equations and we have the homogeneous solutions are given by

$$
C_{1} \sin x+C_{2} \cos x
$$

Note that $\sin x+\cos x$ is a homogeneous solution. Hence, we should look for solution that has the from $A x \sin x+B x \cos x$. We then calculate that $A=\frac{1}{2}, B=-\frac{1}{2}$. Hence, the general solutions are given by

$$
y(x)=C_{1} \sin x+C_{2} \cos x+\frac{1}{2} x \sin x-\frac{1}{2} x \cos x
$$

Example 4. Find the general solution of the following ODE.

$$
y^{\prime \prime}+6 y^{\prime}+9 y=4 e^{-3 x}
$$

Solution

We first solve the corresponding homogeneous equation and we have the homogeneous solutions are given by

$$
C_{1} e^{-3 x}+C_{2} x e^{-3 x}
$$

Note that $e^{-3 x}$ is a homogeneous solution. Hence, we should look for solution that has the from $A x e^{-3 x}$. We then calculate that $A=2$. Hence, the general solutions are given by

$$
y(x)=C_{1} e^{-3 x}+C_{2} x e^{-3 x}+2 x e^{-3 x}
$$

Example 5. Find the general solutions of the following ODE.

$$
y^{\prime \prime}+11 y^{\prime}-12 y=e^{-x} \sin 2 x
$$

Solution

We first solve the corresponding homogeneous equations and we have the homogeneous solutions are given by

$$
C_{1} e^{-12 x}+C_{2} e^{x}
$$

Now we suppose that $y=e^{x}(A \sin 2 x+B \cos 20)$ is a particular solution of the equations and we solve $A=-\frac{13}{500}$ and $B=\frac{9}{500}$. Hence, the general solutions are given by

$$
y(x)=C_{1} e^{-12 x}+C_{2} e^{x}-\frac{13}{500} e^{-x} \sin 2 x-\frac{9}{500} e^{-x} \cos 2 x
$$

Example 6. Find the general solutions of the following ODE.

$$
y^{\prime \prime}+5 y^{\prime}+6 y=e^{-x}+x^{2}
$$

Solution

We first solve the corresponding homogeneous equations and we have the homogeneous solutions are given by

$$
y(x)=C_{1} e^{-3 x}+C_{2} e^{-2 x}
$$

By superposition principle, we may solve the equation with inhomogeneous terms e^{-x} and x^{2} respectively and then add the solutions together.
We suppose $y=A e^{4 x}$ is a particular solution of the equations with inhomogeneous term e^{-x} and we solve $A=\frac{1}{2}$. Similarly, We suppose $y=B x^{2}+C x+D$ is a particular solution of the equations with inhomogeneous term x^{2} and we solve $B=\frac{1}{6}, C=-\frac{5}{18}$ and $D=\frac{19}{108}$.

Hence, the general solutions are given by

$$
y(x)=C_{1} e^{-3 x}+C_{2} e^{-2 x}+\frac{x^{2}}{6}-\frac{5 x}{18}+\frac{e^{-x}}{2}+\frac{19}{108}
$$

2 Euler' Equidimensional Equations

Definition 1. $n^{\text {th }}$ order (homogeneous) Euler' Equidimensional Equations are ODEs that have the form

$$
a_{n} x^{n} \frac{d^{n} y}{d x^{n}}+a_{n-1} x^{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{0} y=0
$$

where a_{i} are constants for $1 \leq i \leq n$ and $a_{n} \neq 0$.
Example 7. Find the general solutions of the following ODE.

$$
2 x^{2} y^{\prime \prime}-x y^{\prime}+y=0
$$

Solution

We guess the one solution has the form x^{m} for some $m \in \mathbb{R}$. Then,

$$
\begin{aligned}
(2 m(m-1)-m+1) x^{m} & =0 \\
2 m^{2}-3 m+1 & =0 \\
m & =1 \text { OR } m=\frac{1}{2}
\end{aligned}
$$

Hence, the general solutions are given by $C_{1} x+C_{2} \sqrt{x}$ for $x>0$
Exercise. What if $x<0$?
Example 8. Find the general solution of the following $O D E$.

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0
$$

Solution

Again, we guess the one solution has the form x^{m} for some $m \in \mathbb{R}$. Then,

$$
\begin{aligned}
(m(m-1)-3 m+4) x^{m} & =0 \\
m(m-1)-3 m+4 & =0 \\
m^{2}-4 m+4 & =0 \\
m & =2
\end{aligned}
$$

To find another solution, we use the method of reduction of order. Note that by Abel's Theorem, we have the Wronskian $W(t)$ satisfies

$$
W^{\prime}(x)-\frac{3}{x} W(x)=0
$$

which has general solution $W(t)=C x^{3}$. Hence, we have for any solution y_{2} of the $O D E$,

$$
\begin{aligned}
y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2} & =C x^{3} \\
\frac{d}{d x}\left(\frac{y_{2}}{y_{1}}\right) & =\frac{C}{x} \\
y_{2} & =C y_{1} \log x+C_{2} y_{1}
\end{aligned}
$$

Hence, the general solutions are given by $C_{1} x^{2}+C_{2} x^{2} \log x$ for $x>0$
Exercise. What if we have complex roots?

