MATH 3270A Tutorial 3

Alan Yeung Chin Ching

27th September 2018

1 Abels' Theorem and Reduction of order

Example 1. It is given that one solution of the following $O D E$

$$
y^{\prime \prime}-y^{\prime}+e^{2 t} y=0
$$

is $y_{1}=\sin e^{x}$. Find the general solutions to the ODE.

Solution

Note that by Abel's Theorem, we have the Wronskian $W(t)$ satisfies

$$
W^{\prime}(t)-W(t)=0
$$

which has general solution $W(t)=C e^{t}$. Hence, we have for any solution y_{2} of the $O D E$,

$$
\begin{aligned}
y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2} & =C e^{t} \\
\sin e^{t} y_{2}^{\prime}-e^{t} \cos e^{x} y_{2} & =C e^{t} \\
y_{2}^{\prime}-e^{t} \cot e^{t} y_{2} & =C e^{t} \csc e^{t} \\
\frac{d}{d x}\left(e^{\left.-\log \left|\sin e^{t}\right| y\right)}\right. & =C e^{t-\log \left|\sin e^{x}\right|} \csc e^{t} \\
\frac{d}{d x}\left(\frac{y_{2}}{\sin e^{t}}\right) & =\frac{C e^{t}}{\sin e^{x}} \csc e^{t}=C e^{t} \csc ^{2} e^{t} \\
\frac{y_{2}}{\sin e^{t}} & =-C \cot e^{t}+C^{\prime} \\
y_{2} & =-C \cos e^{t}+C^{\prime} \sin e^{t}
\end{aligned}
$$

Hence, all solutions of the ODE are given by $y=C_{1} \cos e^{t}+C_{2} \sin e^{t}$
Remark. The equation can actually be solved directly by letting $x=e^{t}$.
Example 2. Show that $y=e^{x}$ and $y=\sin x$ cannot simultaneously be the solutions of $y^{\prime \prime}+$ $p(x) y^{\prime}+q(x) y=0$, where $p(x)$ and $q(x)$ are continuous function on $(0, \pi)$.

Solution

We calculate the Wronskian $W(x)$ associated with $y_{1}=e^{x}$ and $y_{2}=\sin x$.

$$
\begin{aligned}
W(x) & =\left|\begin{array}{ll}
y_{1} & y_{t}^{\prime} \\
y_{2} & y_{2}
\end{array}\right| \\
& =\left|\begin{array}{cc}
e^{x} & e^{x} \\
\sin x & \cos x
\end{array}\right| \\
& =e^{x}(\sin x-\cos x)
\end{aligned}
$$

which is zero for $x=\frac{\pi}{4}$ and non-zero for $x \neq \frac{\pi}{4}$ on $(0, \pi)$. According to Abel's Theorem, $y=e^{x}$ and $y=\sin x$ cannot simultaneously be the solutions of the ODE.

2 Second order linear ODEs with constant coefficients

Example 3. Solve the following initial value problem.

$$
\left\{\begin{aligned}
y^{\prime \prime}-4 y^{\prime}+53 y & =0 \\
y(0) & =8 \\
y^{\prime}(0) & =2
\end{aligned}\right.
$$

Solution

We solve the characteristic polynomial.

$$
\begin{aligned}
r^{2}-4 r+53 & =0 \\
r & =2+7 i \text { or } r=2-7 i
\end{aligned}
$$

Hence, $e^{2 t} \cos 7 t$ and $e^{2 t} \sin 7 t$ are two fundamental solutions and the general solutions are given by

$$
C_{1} e^{2 t} \cos 7 t+C_{2} e^{2 t} \sin 7 t
$$

Putting the initial value, we have the $C_{1}=8$ and $C_{2}=-2$

3 Factorization of Operators

Here we present an alternative method that does not require guessing the form of the solution.
Example 4. Find the general solutions to the following ODE.

$$
\frac{d^{2} y}{d x^{2}}-12 \frac{d y}{d x}+35 y=0
$$

Solution

Note that we can factorize the LHS as

$$
\frac{d^{2} y}{d x^{2}}-12 \frac{d y}{d x}+35 y=\left(\frac{d}{d x}-5\right)\left(\frac{d}{d x}-7\right) y
$$

Here, multiplication of the operators represents composition of the operators. Hence,

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}}-12 \frac{d y}{d x}+35 y & =0 \\
\left(\frac{d}{d x}-5\right) \underbrace{\left(\frac{d}{d x}-7\right) y}_{=u} & =0 \\
\frac{d u}{d x}-5 u & =0 \\
u & =C_{1} e^{5 u} \\
\frac{d y}{d x}-7 y & =C_{1} e^{5 x} \\
\frac{d}{d x}\left(e^{-7 x} y\right) & =C_{1} e^{-2 x} \\
e^{-7 x} y & =C_{2} e^{-2 x}+C_{3} \\
y & =C_{2} e^{5 x}+C_{3} e^{7 x}
\end{aligned}
$$

Example 5. Find the general solutions to the following ODE.

$$
\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+9 y=0
$$

Solution

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+9 y & =0 \\
\left(\frac{d}{d x}-3\right)^{2} y & =0 \\
\frac{d y}{d x}-3 y & =C_{1} e^{3 x} \\
\frac{d}{d x}\left(e^{-3 x} y\right) & =C_{1} \\
e^{-3 x} y & =C_{1} t+C_{2} \\
y & =\left(C_{1} t+C_{2}\right) e^{3 y}
\end{aligned}
$$

The method sometimes works also for variable-coefficient differential equation. Example 6. Find the general solutions to the following ODE.

$$
\frac{d^{2} y}{d x^{2}}-(1+\cot x) \frac{d y}{d x}+(\cot x) y=0, \quad 0<x<\pi
$$

Solution

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}}-(1+\cot x) \frac{d y}{d x}+(\cot x) y & =0 \\
\left(\frac{d}{d x}-\cot x\right)\left(\frac{d}{d x}-1\right) y & =0 \\
\frac{d y}{d x}-y & =C_{1} \sin x \\
\frac{d}{d x}\left(e^{-x} y\right) & =C_{1} e^{-x} \sin x \\
e^{-x} y & =C_{2} e^{-x}(\sin x+\cos x)+C_{3} \\
y & =C_{2}(\sin x+\cos x)+C_{3} e^{x}
\end{aligned}
$$

