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1 Separable equations

Example 1 (Logistic Model).

dN

dt
= r

(
1− N

K

)
N, N > 0

where r and K are positive constants.

Solution1

If N(t) = K for some t, then N(t) = K for all t by uniqueness of the solution (See Theorem 1
below) . Hence, without loss of generality, we assume N(t) 6= K for all t.

dN

dt
= r

(
1− N

K

)
N

dN(
1− N

K

)
N

= rdt(
1

N
+

1

K
(
1− N

K

)) dN = rdt

logN − log

∣∣∣∣1− N

K

∣∣∣∣ = rt+ C

log

∣∣∣∣∣ N

1− N
K

∣∣∣∣∣ = rt+ C

N

1− N
K

= Aert where A = ±eC

N =
AKert

K + Aert
=

AK

A+Ke−rt

=
N(0)K

N(0) + (K −N(0))e−rt

Exercise. The ODE is a Bernoulli Equation with n = 2. Try to solve the ODE by the method
introduced in Tutorial 1.

1I have implicitly assumed 0 < N < K for the calculation I presented in the tutorial. The solution here
(with only slight modification) does not need this assumption.
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2 Exact equations

Example 2.
sinx

y

dy

dx
= −sinx

x
− cosx log xy, 0 < x < π, y > 0

Solution

sinx

y

dy

dx
= −sinx

x
− cosx log xy

sinx

y

dy

dx
+

sinx

x
+ cosx log xy = 0 =M

dy

dx
+N

Now, note that

∂M

∂x
=

cosx

y
=
∂N

∂y

Hence, the equation is exact. Let f be such that

∂f

∂y
=M

∂f

∂x
= N

Integrating M with respect to y gives

f(x, y) = sin x log y + g(x).

for some function g. Differentiating with respect to x once gives

N = cosx log y + g′(x)

=⇒ g′(x) =
sinx

x
+ cosx log x

=⇒ g(x) = sin x log x+ C

Take C = 0 and we have

f(x, y) = sinx log y + sinx log x = sinx log(xy)

Hence, we have

d

dx
(sinx log(xy)) = 0

sinx log(xy) = C ′

y =
1

x
e

C′
sin x

3 Integrating factor for non-linear equations

Example 3.

(2x+ 5y)
dy

dx
+ y = 0

Solution
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Let M and N be such that

(2x+ 5y)
dy

dx
+ y = N

dy

dx
+M

We compute that

∂N

∂x
= 2

∂M

∂y
= 1

∂N
∂x
− ∂M

∂y

M
=

1

y

Hence, one integrating factor is given by finding one solution to µ′(y) =
µ(y)

y
, one may choose

µ(y) = y

The ODE becomes (
2xy + 5y2

) dy
dx

+ y2 = 0

d

dx

(
xy2 +

5

3
y3
)

= 0

xy2 +
5

3
y3 = C

4 General first-order ODEs: Existence and Uniqueness

Theorem 1 (The Fundamental Theorem of ODEs, Picard - Lindelf). Let f : (a, b)×(c, d)→ R

be a continuous function. Suppose
∂f

∂y
is continuous on (a, b)× (c, d). Then, for all t0 ∈ (a, b)

and y0 ∈ (c, d), there exists δ > 0 such that the following initial value problem{
dy

dt
= f(t, y(t))

y(t0) = y0
(1)

has a unique solution in (t0 − δ, t0 + δ) ⊆ (a, b).

Remark. 1. For fixed (t0, y0), the condition
∂f

∂y
is continuous on (a, b)× (c, d) can actually

be weakened to f(t, ·) is uniformly Lipschitz continuous in t, i.e. there exists L > 0 such
that |f(t, y1)− f(t, y2)| ≤ L|y1 − y2| for all t close to t0 and y1, y2 close to y0.

2. For linear equations, the existence and uniqueness can be obtained in the whole domain
(a, b) by Theorem 1 in tutorial 1.

3. If the condition on the continuity of
∂f

∂y
on (a, b)× (c, d) is not satisfied, the existence of

solution is still true.

4. There is no similar result in the theory of partial differential equations.
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