MATH 3270A Tutorial 2

Alan Yeung Chin Ching

20th September 2018

1 Separable equations

Example 1 (Logistic Model).

$$
\frac{d N}{d t}=r\left(1-\frac{N}{K}\right) N, \quad N>0
$$

where r and K are positive constants.

Solution ${ }^{1}$

If $N(t)=K$ for some t, then $N(t)=K$ for all t by uniqueness of the solution (See Theorem 1 below). Hence, without loss of generality, we assume $N(t) \neq K$ for all t.

$$
\begin{aligned}
\frac{d N}{d t} & =r\left(1-\frac{N}{K}\right) N \\
\frac{d N}{\left(1-\frac{N}{K}\right) N} & =r d t \\
\left(\frac{1}{N}+\frac{1}{K\left(1-\frac{N}{K}\right)}\right) d N & =r d t \\
\log N-\log \left|1-\frac{N}{K}\right| & =r t+C \\
\log \left|\frac{N}{1-\frac{N}{K}}\right| & =r t+C \\
\frac{N}{1-\frac{N}{K}} & =A e^{r t} \quad \text { where } A= \pm e^{C} \\
N & =\frac{A K e^{r t}}{K+A e^{r t}}=\frac{A K}{A+K e^{-r t}} \\
& =\frac{N(0) K}{N(0)+(K-N(0)) e^{-r t}}
\end{aligned}
$$

Exercise. The ODE is a Bernoulli Equation with $n=2$. Try to solve the ODE by the method introduced in Tutorial 1.

[^0]
2 Exact equations

Example 2.

$$
\frac{\sin x}{y} \frac{d y}{d x}=-\frac{\sin x}{x}-\cos x \log x y, \quad 0<x<\pi, y>0
$$

Solution

$$
\begin{aligned}
\frac{\sin x}{y} \frac{d y}{d x} & =-\frac{\sin x}{x}-\cos x \log x y \\
\frac{\sin x}{y} \frac{d y}{d x}+\frac{\sin x}{x}+\cos x \log x y & =0=M \frac{d y}{d x}+N
\end{aligned}
$$

Now, note that

$$
\frac{\partial M}{\partial x}=\frac{\cos x}{y}=\frac{\partial N}{\partial y}
$$

Hence, the equation is exact. Let f be such that

$$
\frac{\partial f}{\partial y}=M \quad \frac{\partial f}{\partial x}=N
$$

Integrating M with respect to y gives

$$
f(x, y)=\sin x \log y+g(x) .
$$

for some function g. Differentiating with respect to x once gives

$$
\begin{aligned}
N & =\cos x \log y+g^{\prime}(x) \\
\Longrightarrow g^{\prime}(x) & =\frac{\sin x}{x}+\cos x \log x \\
\Longrightarrow g(x) & =\sin x \log x+C
\end{aligned}
$$

Take $C=0$ and we have

$$
f(x, y)=\sin x \log y+\sin x \log x=\sin x \log (x y)
$$

Hence, we have

$$
\begin{aligned}
\frac{d}{d x}(\sin x \log (x y)) & =0 \\
\sin x \log (x y) & =C^{\prime} \\
y & =\frac{1}{x} e^{\frac{C^{\prime}}{\sin x}}
\end{aligned}
$$

3 Integrating factor for non-linear equations

Example 3.

$$
(2 x+5 y) \frac{d y}{d x}+y=0
$$

Solution

Let M and N be such that

$$
(2 x+5 y) \frac{d y}{d x}+y=N \frac{d y}{d x}+M
$$

We compute that

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =2 \\
\frac{\partial M}{\partial y} & =1 \\
\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y} & =\frac{1}{y}
\end{aligned}
$$

Hence, one integrating factor is given by finding one solution to $\mu^{\prime}(y)=\frac{\mu(y)}{y}$, one may choose

$$
\mu(y)=y
$$

The ODE becomes

$$
\begin{aligned}
\left(2 x y+5 y^{2}\right) \frac{d y}{d x}+y^{2} & =0 \\
\frac{d}{d x}\left(x y^{2}+\frac{5}{3} y^{3}\right) & =0 \\
x y^{2}+\frac{5}{3} y^{3} & =C
\end{aligned}
$$

4 General first-order ODEs: Existence and Uniqueness

Theorem 1 (The Fundamental Theorem of ODEs, Picard - Lindelf). Let $f:(a, b) \times(c, d) \rightarrow \mathbb{R}$ be a continuous function. Suppose $\frac{\partial f}{\partial y}$ is continuous on $(a, b) \times(c, d)$. Then, for all $t_{0} \in(a, b)$ and $y_{0} \in(c, d)$, there exists $\delta>0$ such that the following initial value problem

$$
\begin{cases}\frac{d y}{d t} & =f(t, y(t)) \tag{1}\\ y\left(t_{0}\right) & =y_{0}\end{cases}
$$

has a unique solution in $\left(t_{0}-\delta, t_{0}+\delta\right) \subseteq(a, b)$.
Remark. 1. For fixed $\left(t_{0}, y_{0}\right)$, the condition $\frac{\partial f}{\partial y}$ is continuous on $(a, b) \times(c, d)$ can actually be weakened to $f(t, \cdot)$ is uniformly Lipschitz continuous in t, i.e. there exists $L>0$ such that $\left|f\left(t, y_{1}\right)-f\left(t, y_{2}\right)\right| \leq L\left|y_{1}-y_{2}\right|$ for all t close to t_{0} and y_{1}, y_{2} close to y_{0}.
2. For linear equations, the existence and uniqueness can be obtained in the whole domain (a, b) by Theorem 1 in tutorial 1.
3. If the condition on the continuity of $\frac{\partial f}{\partial y}$ on $(a, b) \times(c, d)$ is not satisfied, the existence of solution is still true.
4. There is no similar result in the theory of partial differential equations.

[^0]: ${ }^{1}$ I have implicitly assumed $0<N<K$ for the calculation I presented in the tutorial. The solution here (with only slight modification) does not need this assumption.

