MATH 3270A Tutorial 10

Alan Yeung Chin Ching

22nd November 2018

1 Variation of Parameters

Theorem 1. Let $A(t), r(t)$ be matrix-valued and vector-valued functions depends continuously on $t \in(a, b)$. Consider the system of first-order ODE

$$
\begin{equation*}
y^{\prime}(t)=A(t) y(t)+r(t) \tag{1}
\end{equation*}
$$

Let $X(t)$ be a fundamental matrix of the corresponding homogeneous system of (1). Then, a particular solution of (1) is given by

$$
y(t)=X(t) \int X^{-1}(t) r(t) d t
$$

Example 1. Solve the following system of ODEs.

$$
y^{\prime}(t)=\left(\begin{array}{ll}
2 & -1 \tag{2}\\
3 & -2
\end{array}\right) y+\binom{e^{t}}{0}
$$

Solution

The homogeneous solutions are given by

$$
y(t)=C_{1} e^{t}\binom{1}{1}+C_{2} e^{-t}\binom{1}{3}
$$

Hence, a fundamental matrix is given by

$$
X(t)=\left(\begin{array}{ll}
e^{t} & e^{-t} \\
e^{t} & 3 e^{t}
\end{array}\right)
$$

Hence, a particular solution is given by

$$
\begin{aligned}
y(t) & =X(t) \int X^{-1}\binom{e^{t}}{0} d t \\
& =\left(\begin{array}{cc}
e^{t} & e^{-t} \\
e^{t} & 3 e^{-t}
\end{array}\right) \int\left(\begin{array}{cc}
e^{t} & e^{-t} \\
e^{t} & 3 e^{-t}
\end{array}\right)^{-1}\binom{e^{t}}{0} d t \\
& =\frac{1}{2}\left(\begin{array}{cc}
e^{t} & e^{-t} \\
e^{t} & 3 e^{-t}
\end{array}\right) \int\left(\begin{array}{cc}
3 e^{-t} & -e^{-t} \\
-e^{t} & e^{t}
\end{array}\right)\binom{e^{t}}{0} d t \\
& =\frac{1}{2}\left(\begin{array}{cc}
e^{t} & e^{-t} \\
e^{t} & 3 e^{-t}
\end{array}\right) \int\binom{3}{-e^{2 t}} d t \\
& =\frac{1}{2}\left(\begin{array}{cc}
e^{t} & e^{-t} \\
e^{t} & 3 e^{-t}
\end{array}\right)\binom{3 t}{-e^{2 t} / 2} \\
& =\frac{1}{2}\binom{3 t e^{t}-e^{t} / 2}{3 t e^{t}-3 e^{t} / 2}
\end{aligned}
$$

Hence, the general solutions are given by

$$
y=C_{1} e^{t}\binom{1}{1}+C_{2} e^{-t}\binom{1}{3}+\frac{1}{2}\binom{3 t e^{t}-e^{t} / 2}{3 t e^{t}-3 e^{t} / 2}
$$

2 Phase Portrait

Example 2. Draw a representative set of trajectory of the phase portrait of the following system.

$$
y^{\prime}=\left(\begin{array}{cc}
-5 & 8 \\
2 & 1
\end{array}\right) y
$$

Solution

Now, we find the eigenvalues and the corresponding eigenvectors of

$$
A=\left(\begin{array}{cc}
-5 & 8 \\
2 & 1
\end{array}\right)
$$

The characteristic polynomial is given by

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{cc}
-5-\lambda & 8 \\
2 & 1-\lambda
\end{array}\right)=-\lambda^{2}-4 \lambda+21
$$

which has roots $\lambda_{1}=3$ and $\lambda_{2}=-7$. Note that

$$
v_{1}=\binom{1}{1}, v_{2}=\binom{4}{-1}
$$

are corresponding eigenvectors.

Example 3. Draw a representative set of trajectory of the phase portrait of the following system.

$$
y^{\prime}=\left(\begin{array}{cc}
6 & -2 \\
5 & 4
\end{array}\right) y
$$

Solution

Now, we find the eigenvalues and the corresponding eigenvectors of

$$
A=\left(\begin{array}{cc}
6 & -2 \\
5 & 4
\end{array}\right)
$$

The characteristic polynomial is given by

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{cc}
6-\lambda & -2 \\
5 & 4-\lambda
\end{array}\right)=-\lambda^{2}+10 \lambda-33
$$

which has roots $\lambda_{1}=5+3 i$ and $\lambda_{2}=5-3 i$. Note that

$$
v_{1}=\binom{1+3 i}{5}, v_{2}=\binom{1-3 i}{5}
$$

are corresponding eigenvectors.
Example 4. Draw a representative set of trajectory of the phase portrait of the following system.

$$
y^{\prime}=\left(\begin{array}{cc}
-5 & 8 \\
2 & 1
\end{array}\right) y
$$

Solution

Now, we find the eigenvalues and the corresponding eigenvectors of

$$
A=\left(\begin{array}{ll}
9 & 0 \\
0 & 9
\end{array}\right)
$$

Clearly, $\lambda=9$ is the only eigenvalue and every vector is an eigenvector.

Example 5. Draw a representative set of trajectory of the phase portrait of the following system.

$$
y^{\prime}=\left(\begin{array}{cc}
11 & -5 \\
5 & 1
\end{array}\right) y
$$

Solution

Now, we find the eigenvalues and the corresponding eigenvectors of

$$
A=\left(\begin{array}{cc}
11 & -5 \\
5 & 1
\end{array}\right)
$$

The characteristic polynomial is given by

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{cc}
11-\lambda & -5 \\
5 & 1-\lambda
\end{array}\right)=-\lambda^{2}+12 \lambda-36
$$

which has double roots $\lambda=6$. Note that

$$
v_{1}=\binom{1}{1}
$$

is a corresponding eigenvector. Now, we want to find two generalized eigenvectors. To do so, we solve for v_{2} such that

$$
\begin{aligned}
(A-6 I) v_{2} & =v_{1} \\
\left(\begin{array}{ll}
5 & -5 \\
5 & -5
\end{array}\right) v_{2} & =\binom{1}{1}
\end{aligned}
$$

One may take

$$
v_{2}=\binom{1 / 5}{0}
$$

Example 6. Draw a representative set of trajectory of the phase portrait of the following system.

$$
\left\{\begin{array}{l}
y_{1}^{\prime}=2 y_{1}+y_{2} \\
y_{2}^{\prime}=4 y_{1}+2 y_{2}
\end{array}\right.
$$

Solution

The system is solved in the last tutorial and the solutions are given by

$$
\binom{y_{1}}{y_{2}}=C_{1}\binom{1}{-2}+C_{2} e^{4 t}\binom{1}{2}
$$

