Suggested solutions to HW4 for MATH3270a

Rong ZHANG*

December 7, 2018

1. (3points) If $x_{1}=y$ and $x_{2}=y^{\prime}$, and we consider the second order equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

corresponding to the system of $1^{\text {st }}$ order equations

$$
\begin{aligned}
& x_{1}^{\prime}=x_{2} \\
& x_{2}^{\prime}=-q(t) x_{1}-p(t) x_{2}
\end{aligned}
$$

(a) (2points) Let X be a fundamental matrix for above system and y_{1}, y_{2} be a fundamental set of solutions for above second order equation, show that we must have $W\left[y_{1}, y_{2}\right](t)=$ $c \operatorname{det}(X(t))$ for some non-zero constant c.
(b) (1point) If p, q are constants, by writing the above system as $\frac{d x}{d t}=A x$ for some 2×2 constant matrix, show that the characteristic polyminial of A agrees with the characteristic polynomial of the second order equation.

Solution:

(a) If y_{1}, y_{2} are a fundamental set of solutions for above second order equation, then $\binom{y_{1}}{y_{1}^{\prime}},\binom{y_{2}}{y_{2}^{\prime}}$ are a fundamental set of solutions for above system. Thus there exists some constant matrix C such that

$$
\left(\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right)=X(t) C
$$

then we have

$$
0 \neq W\left[y_{1}, y_{2}\right](t)=\operatorname{det}(X(t)) \operatorname{det}(C)
$$

Let $c=\operatorname{det} C$, which cannot be zero since $\operatorname{det} X \neq 0$, so we finish the proof.
(b) Here $A=\left(\begin{array}{cc}0 & 1 \\ -q & -p\end{array}\right)$, so the characteristic polynomial is given by $f(r)=r(r+p)+q=$ $r^{2}+p r+q$.
2. (4points) We consider the system

$$
\frac{d y}{d t}=\left(\begin{array}{ll}
-1 & -1 \\
-\alpha & -1
\end{array}\right) y
$$

(a) (1point) Solve the above system for $\alpha=\frac{1}{2}$ and classify the critical 0 of the system as to type and stability;
(b) (1point) Repeat part (a) for $\alpha=2$;

[^0](c) Find (1point) the eigenvalues of the matrix $\left(\begin{array}{ll}-1 & -1 \\ -\alpha & -1\end{array}\right)$ in terms of α, and determine (1point) the value of α between $\frac{1}{2}$ and 2 where the transition from one behaviour to other occurs.

Solution:

(a) The eigenvalues of $\left(\begin{array}{ll}-1 & -1 \\ -\frac{1}{2} & -1\end{array}\right)$ are $\lambda=-1 \pm \frac{\sqrt{2}}{2}<0$, then critical point 0 is a node and asymptotically stable.
(b) The eigenvalues of $\left(\begin{array}{ll}-1 & -1 \\ -2 & -1\end{array}\right)$ are $\lambda_{1}=-1-\sqrt{2}<0, \lambda_{2}=-1+\sqrt{2}>0$, then critical point 0 is a saddle point and unstable.
(c) The eigenvalues of $\left(\begin{array}{ll}-1 & -1 \\ -\alpha & -1\end{array}\right)$ are $\lambda_{1}=-1-\sqrt{\alpha}<0, \lambda_{2}=-1+\sqrt{\alpha}$. Hence $\alpha=1$ is the critical point.
3. (8points=2points $\times 4)$ Find the real-valued general solution to the following system of linear differential equations:
(a) $\frac{d y}{d t}=\left(\begin{array}{cc}2 & 3 \\ -1 & -2\end{array}\right) y+\binom{e^{t}}{t}$;
(b) $\frac{d y}{d t}=\left(\begin{array}{ccc}-3 & 0 & 2 \\ 1 & -1 & 0 \\ -2 & -1 & 0\end{array}\right) y$;
(c) $\frac{d y}{d t}=\left(\begin{array}{ccc}1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1\end{array}\right) y$;
(d) $\frac{d y}{d t}=\left(\begin{array}{ccc}5 & -3 & -2 \\ 8 & -5 & -4 \\ -4 & 3 & 3\end{array}\right) y$;

Solution:

(a) The eigenvalue and corresponding eigenvector of matrix $A=\left(\begin{array}{cc}2 & 3 \\ -1 & -2\end{array}\right)$ are

$$
\begin{aligned}
& \lambda_{1}=-1, \quad r_{1}=\binom{1}{-1} \\
& \lambda_{2}=1, \quad r_{2}=\binom{3}{-1},
\end{aligned}
$$

then the general solution to homogeneous equation is

$$
y_{c}=C_{1} e^{-t}\binom{1}{-1}+C_{2} e^{t}\binom{3}{-1}
$$

with arbitrary constants C_{1}, C_{2}. One particular solution is of the form

$$
Y(t)=\vec{a} t+\vec{b}+\vec{c} e^{t}+\overrightarrow{d t} e^{t}
$$

with constant vectors $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ to be determined. Then

$$
\frac{d Y}{d t}=\vec{a}+(\vec{c}+\vec{d}) e^{t}+\overrightarrow{d t} e^{t}=A \vec{a} t+A \vec{b}+A \vec{c} e^{t}+A \overrightarrow{d t} e^{t}+\binom{e^{t}}{t}
$$

which implies that

$$
\left\{\begin{array}{l}
A \vec{a}+\binom{0}{1}=0 \\
A \vec{b}=\vec{a}, \\
A \vec{c}+\binom{1}{0}=\vec{c}+\vec{d} \\
A \vec{d}=\vec{d}
\end{array}\right.
$$

Then we have

$$
\vec{a}=\binom{-3}{2}, \quad \vec{b}=\binom{0}{-1}, \quad \vec{c}=\binom{-\frac{1}{4}}{\frac{1}{4}}, \quad \vec{d}=\binom{\frac{3}{2}}{-\frac{1}{2}} .
$$

Hence the general solution is given by

$$
y=C_{1} e^{-t}\binom{1}{-1}+C_{2} e^{t}\binom{3}{-1}+\binom{-3 t}{2 t-1}+\binom{-\frac{1}{4}}{\frac{1}{4}} e^{t}+\binom{\frac{3}{2}}{-\frac{1}{2}} t e^{t} .
$$

(b) The eigenvalue and corresponding eigenvector of matrix $A=\left(\begin{array}{ccc}-3 & 0 & 2 \\ 1 & -1 & 0 \\ -2 & -1 & 0\end{array}\right)$ are

$$
\begin{array}{r}
\lambda_{1}=-2, \quad r_{1}=\left(\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right), \\
\lambda_{2}=-1-\sqrt{2} i, \quad r_{2}=\left(\begin{array}{c}
\sqrt{2} i \\
-1 \\
\sqrt{2} i+1
\end{array}\right), \\
\lambda_{3}=-1+\sqrt{2} i, \quad r_{2}=\left(\begin{array}{c}
\sqrt{2} i \\
1 \\
\sqrt{2} i-1
\end{array}\right),
\end{array}
$$

then the real-valued general solution is
$y_{c}=C_{1} e^{-2 t}\left(\begin{array}{c}2 \\ -2 \\ 1\end{array}\right)+C_{2} e^{-t}\left(\begin{array}{c}\sqrt{2} \cos (\sqrt{2} t) \\ \sin (\sqrt{2} t) \\ \sqrt{2} \cos (\sqrt{2} t)-\sin (\sqrt{2} t)\end{array}\right)+C_{3} e^{-t}\left(\begin{array}{c}\sqrt{2} \sin (\sqrt{2} t) \\ -\cos (\sqrt{2} t) \\ \sqrt{2} \sin (\sqrt{2} t)+\cos (\sqrt{2} t)\end{array}\right)$
with arbitrary constants C_{1}, C_{2}, C_{3}.
(c) The eigenvalue and corresponding eigenvector of matrix $A=\left(\begin{array}{ccc}1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1\end{array}\right)$ are

$$
\begin{array}{r}
\lambda_{1}=-2, \quad r_{1}=\left(\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right), \\
\lambda_{2}=1, \quad r_{2}=\left(\begin{array}{c}
-1 \\
4 \\
1
\end{array}\right), \\
\lambda_{3}=3, \quad r_{2}=\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right),
\end{array}
$$

then the general solution is

$$
y_{c}=C_{1} e^{-2 t}\left(\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right)+C_{2} e^{t}\left(\begin{array}{c}
-1 \\
4 \\
1
\end{array}\right)+C_{3} e^{3 t}\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)
$$

with arbitrary constants C_{1}, C_{2}, C_{3}.
(d) The eigenvalue of matrix $A=\left(\begin{array}{ccc}5 & -3 & -2 \\ 8 & -5 & -4 \\ -4 & 3 & 3\end{array}\right)$ is $\lambda=1$ with algebraic multiplicity 3 and geometric multiplicity 2 , the corresponing eigenvectors and generalized eigenvector are

$$
r_{1}=\left(\begin{array}{l}
3 \\
4 \\
0
\end{array}\right), \quad r_{2}=\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right), \quad \xi=\left(\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right)
$$

then the general solution is

$$
y_{c}=C_{1} e^{t}\left(\begin{array}{l}
3 \\
4 \\
0
\end{array}\right)+C_{2} e^{t}\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right)+C_{3} e^{t}\left\{\left(\begin{array}{c}
2 \\
4 \\
-2
\end{array}\right) t+\left(\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right)\right\}
$$

with arbitrary constants C_{1}, C_{2}, C_{3}.
4. (3points=1point \times 3) Let A be a constant $n \times n$ matrix, and we consider the matrix valued differential equation $\Phi^{\prime}=A \Phi$, with initial value $\Phi\left(t_{0}\right)=B$ for some invertible matrix B.
(a) Show that above initial value problem has a unique soluiton defining on \mathbb{R}.
(b) Suppose $\Phi(t)$ is the unique solution with initial data $\Phi(0)=I$, show that $\Phi(t) \Phi(s)=$ $\Phi(t+s)$.
(c) Show that $\Phi(t) \Phi(-t)=I$ and hence $\Phi(t-s)=\Phi(t) \Phi(s)^{-1}$.

Solution:

(a) Let $\Phi(t)=\left(\phi_{1}, \phi_{2}, \cdots, \phi_{n}\right)$ with $\phi_{i}, i, 1,2, \cdots, n$ vectors, then for any $i \in\{1,2, \cdots, n\}$

$$
\begin{array}{r}
\phi_{i}^{\prime}(t)=A \phi_{i}(t) \\
\phi_{i}(0)=b_{i}
\end{array}
$$

where $B=\left(b_{1}, b_{2}, \cdots, b_{n}\right)$. Since A is a constant matrix, so the elements of A are continuous on the whole \mathbb{R}, then there exists a unique solution ϕ_{i} for each i by existence and uniqueness of first order system of partial differential equation. Hence there exists a unique solution $\Phi(t)=\left(\phi_{1}, \phi_{2}, \cdots, \phi_{n}\right)$ for above initial value problem on whole line \mathbb{R}.
(b) Let s be a fixed point. Since $\Phi(t) \Phi(s)$ and $\Phi(t+s)$ satisfy

$$
\begin{array}{r}
\Phi^{\prime}(t)=A \Phi(t) \\
\Phi(0)=\Phi(s)
\end{array}
$$

then by uniqueness they are equal.
(c) Let $s=-t$ in $\Phi(t) \Phi(s)=\Phi(t+s)$, together with $\Phi(0)=I$, we get $\Phi(t) \Phi(-t)=I$ immediately, which implies that $\Phi(-t)=\Phi(t)^{-1}$, thus $\Phi(t-s)=\Phi(t) \Phi(-s)=\Phi(t) \Phi(s)^{-1}$.
5. $(\mathbf{6}$ points $=\mathbf{2}$ points $\times \mathbf{3})$ Sketch the phase portrait for each of the linear system of $1^{\text {st }}$ order differential equations:
(a) $\frac{d y}{d t}=\left(\begin{array}{cc}1 & 1 \\ -5 & -3\end{array}\right) y$;
(b) $\frac{d y}{d t}=\left(\begin{array}{cc}-1 & 0 \\ -1 & -\frac{1}{4}\end{array}\right) y$;
(c) $\frac{d y}{d t}=\left(\begin{array}{cc}3 & 1 \\ -4 & -1\end{array}\right) y$;

Solution:

(a) First, the critical point of the system is $(0,0)$.

Then the eigenvalues of matrix $A=\left(\begin{array}{cc}1 & 1 \\ -5 & -3\end{array}\right)$ are $\lambda=-1 \pm i$. So the $(0,0)$ is stable and a spirial point.
The phase portrait is shown in the following. (Note that the direction at point $(1,1)$ is $\binom{2}{-8}$, so the trajectory moves in clockwise direction to zero.)

(b) First, the critical point of the system is $(0,0)$.

Then the eigenvalue and corresponding eigenvector of matrix $A=\left(\begin{array}{cc}-1 & 0 \\ -1 & -\frac{1}{4}\end{array}\right)$ are

$$
\begin{aligned}
& \lambda_{1}=-1, \quad r_{1}=\binom{3}{4} \\
& \lambda_{2}=-\frac{1}{4}, \quad r_{2}=\binom{0}{1},
\end{aligned}
$$

so the point $(0,0)$ is a node and stable.
The phase portrait is shown in the following (it should be noted that the eigenvector r_{2} is wrong in the picture, please correct it by yourself.).

(c) First, the critical point of the system is $(0,0)$.

Then the eigenvalue of matrix $A=\left(\begin{array}{cc}3 & 1 \\ -4 & -1\end{array}\right)$ is $\lambda=1$ with algebraic multiplicity 2 and geometric multiplicity 1 , the corrsponding eigenvector and generalized eigenvector are

$$
r=\binom{1}{-2}, \quad \xi=\binom{0}{1},
$$

so the point $(0,0)$ is a node and unstable.
The phase portrait is shown in the following.

6. ($\mathbf{6}$ points $=\mathbf{3}$ points $\times \mathbf{2}$) For each of the following nonlinear system of $1^{\text {st }}$ order differential equations:

- (1point) Find all critical points of the above system and the corresponding linear system near each critical points;
- (1point) Determine the type and stability of the linear system associated to each critical points;
- (1point) Draw the phase portrait for the nonlinear system of differential equations.
(a)

$$
\begin{aligned}
& \frac{d y_{1}}{d t}=\left(3+y_{1}\right)\left(y_{2}-y_{1}\right), \\
& \frac{d y_{2}}{d t}=\left(4-y_{1}\right)\left(y_{2}+y_{1}\right) ;
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \frac{d y_{1}}{d t}=y_{1}\left(1-y_{1}-y_{2}\right), \\
& \frac{d y_{2}}{d t}=y_{2}\left(2-y_{1}-y_{2}\right) .
\end{aligned}
$$

Solution:

(a) - Let $F=\left(3+y_{1}\right)\left(y_{2}-y_{1}\right), G=\left(4-y_{1}\right)\left(y_{2}+y_{1}\right)$, then by solving

$$
\begin{aligned}
& F=0, \\
& G=0,
\end{aligned}
$$

we find all critical points $P_{1}=(0,0), P_{2}=(-3,3), P_{3}=(4,4)$. Then

$$
\frac{d(F, G)}{d\left(y_{1}, y_{2}\right)}=\left(\begin{array}{ll}
y_{2}-2 y_{1}-3 & 3+y_{1} \\
4-y_{2}-2 y_{1} & 4-y_{1}
\end{array}\right)
$$

so the correponding linear system near each critical point is given by

$$
y^{\prime}=A\left(P_{i}\right) y
$$

where

$$
A\left(P_{1}\right)=\left(\begin{array}{cc}
-3 & 3 \\
4 & 4
\end{array}\right), \quad A\left(P_{2}\right)=\left(\begin{array}{cc}
6 & 0 \\
7 & 7
\end{array}\right), \quad A\left(P_{3}\right)=\left(\begin{array}{cc}
-7 & 7 \\
-8 & 0
\end{array}\right)
$$

- The eigenvalues of $A\left(P_{1}\right)$ are $\lambda_{1}=\frac{1-\sqrt{97}}{2}<0, \lambda_{1}=\frac{1+\sqrt{97}}{2}>0$, so the critical point $P_{1}=(0,0)$ is a saddle point and unstable. Moreover, the corresponding eigenvectors are

$$
r_{1}=\binom{6}{7-\sqrt{97}}, \quad r_{2}=\binom{6}{7+\sqrt{97}} .
$$

The eigenvalues of $A\left(P_{2}\right)$ are $\lambda_{1}=6, \lambda_{2}=7$, so the critical point $P_{2}=(-3,3)$ is a node and unstable. Moreover, the corresponding eigenvectors are

$$
r_{1}=\binom{1}{-7}, \quad r_{2}=\binom{0}{1}
$$

The eigenvalues of $A\left(P_{3}\right)$ are $\lambda=\frac{-7 \pm 5 \sqrt{7} i}{2}$, so the critical point $P_{3}=(4,4)$ is a spirial point and stable. Note that the direction at point $(5,4)$ is $\binom{-7}{-40}$, so the trajectory around $P_{3}=(4,4)$ moves in clockwise direction to P_{3}.

- The phase portrait:

(b) - Let $F=y_{1}\left(1-y_{1}-y_{2}\right), G=y_{2}\left(2-y_{1}-y_{2}\right)$, then by solving

$$
\begin{aligned}
& F=0, \\
& G=0,
\end{aligned}
$$

we find all critical points $P_{1}=(0,0), P_{2}=(0,2), P_{3}=(1,0)$. Then

$$
\frac{d(F, G)}{d\left(y_{1}, y_{2}\right)}=\left(\begin{array}{cc}
1-2 y_{1}-y_{2} & -y_{1} \\
-y_{2} & 2-y_{1}-2 y_{2}
\end{array}\right)
$$

so the correponding linear system near each critical point is given by

$$
y^{\prime}=A\left(P_{i}\right) y
$$

where

$$
A\left(P_{1}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right), \quad A\left(P_{2}\right)=\left(\begin{array}{cc}
-1 & 0 \\
-2 & -2
\end{array}\right), \quad A\left(P_{3}\right)=\left(\begin{array}{cc}
-1 & -1 \\
0 & 1
\end{array}\right)
$$

- The eigenvalues of $A\left(P_{1}\right)$ are $\lambda_{1}=1, \lambda_{2}=2$, so the critical point $P_{1}=(0,0)$ is a node and unstable. Moreover, the corresponding eigenvectors are

$$
r_{1}=\binom{1}{0}, \quad r_{2}=\binom{0}{1}
$$

The eigenvalues of $A\left(P_{2}\right)$ are $\lambda_{1}=-1, \lambda_{2}=-2$, so the critical point $P_{2}=(0,2)$ is a node and stable. Moreover, the corresponding eigenvectors are

$$
r_{1}=\binom{1}{-2}, \quad r_{2}=\binom{0}{1} .
$$

The eigenvalues of $A\left(P_{3}\right)$ are $\lambda_{1}=-1, \lambda_{2}=1$, so the critical point $P_{3}=(1,0)$ is a saddle point and unstable. Moreover, the corresponding eigenvectors are

$$
r_{1}=\binom{1}{0}, \quad r_{2}=\binom{1}{-2} .
$$

- The phase portrait:

7. (4points $=\mathbf{2}$ points $\times \mathbf{2})$ Use Liapunov's function to show the stability of the following system of differential equations:
(a) For the system

$$
\begin{aligned}
\frac{d y_{1}}{d t} & =-\frac{1}{2} y_{1}^{3}+2 y_{1} y_{2}^{2} \\
\frac{d y_{2}}{d t} & =-2 y_{2}^{3}
\end{aligned}
$$

show that 0 is an asymptotically stable critical point.
(b) For the system

$$
\begin{aligned}
& \frac{d y_{1}}{d t}=2 y_{1}^{3}-y_{2}^{3} \\
& \frac{d y_{2}}{d t}=2 y_{1} y_{2}^{2}+4 y_{1}^{2} y_{2}+2 y_{2}^{3}
\end{aligned}
$$

show that 0 is an unstable critical point.

Solution:

(a) Let

$$
V=a y_{1}^{2}+b y_{1} y_{2}+c y_{2}^{2},
$$

then

$$
\begin{aligned}
\dot{V} & =\left(2 a y_{1}+b y_{2}\right) \dot{y}_{1}+\left(b y_{1}+2 c y_{2}\right) \dot{y}_{2} \\
& =\left(2 a y_{1}+b y_{2}\right)\left(-\frac{1}{2} y_{1}^{3}+2 y_{1} y_{2}^{2}\right)+\left(b y_{1}+2 c y_{2}\right)\left(-2 y_{2}^{3}\right) \\
& =-a y_{1}^{4}-\frac{1}{2} b y_{1}^{3} y_{2}+4 a y_{1}^{2} y_{2}^{2}-4 c y_{2}^{4} .
\end{aligned}
$$

If $a=c=1, b=0$, then $V=y_{1}^{2}+y_{2}^{2}$ is positive definite and $\dot{V}=-y_{1}^{4}+4 y_{1}^{2} y_{2}^{2}-4 y_{2}^{4}=$ $-\left(y_{1}^{2}-2 y_{2}^{2}\right)^{2}$ is negative semidefinite, thus 0 is a stable critical point.
Moreover, we can show that it's indeed asymptotically stable. For the closed curve (circle for this case) $V=y_{1}^{2}+y_{2}^{2}=c>0$, since

$$
\dot{V}=-\left(y_{1}^{2}-2 y_{2}^{2}\right)^{2}=\left\{\begin{array}{l}
>0, y_{1}^{2} \neq 2 y_{2}^{2} \\
=0, y_{1}^{2}=2 y_{2}^{2}
\end{array}\right.
$$

then the direction of the trajectory across this circle at $y_{1}^{2} \neq 2 y_{2}^{2}$ is inward and if the trajectory aross the circle at these discrete points where $y_{1}^{2}=2 y_{2}^{2}$ (at most four points), the direction is tagent to the circle. Hence, there exists a $\delta_{0}>0$ small enough, such that if initial data is in the ball $B_{\delta_{0}}(0)$, then the trajectory must tend to the origin as time goes to infinity.
(b) Let

$$
V=a y_{1}^{2}+b y_{1} y_{2}+c y_{2}^{2},
$$

then

$$
\begin{aligned}
\dot{V} & =\left(2 a y_{1}+b y_{2}\right) \dot{y}_{1}+\left(b y_{1}+2 c y_{2}\right) \dot{y}_{2} \\
& =\left(2 a y_{1}+b y_{2}\right)\left(2 y_{1}^{3}-y_{2}^{3}\right)+\left(b y_{1}+2 c y_{2}\right)\left(2 y_{1} y_{2}^{2}+4 y_{1}^{2} y_{2}+2 y_{2}^{3}\right) \\
& =4 a y_{1}^{4}+6 b y_{1}^{3} y_{2}+2(b+4 c) y_{1}^{2} y_{2}^{2}+2(b-a+2 c) y_{1} y_{2}^{3}+(4 c-b) y_{2}^{4} .
\end{aligned}
$$

If $a=2 c=2, b=0$, then $V=2 y_{1}^{2}+y_{2}^{2}$ is positive definite and $\dot{V}=8 y_{1}^{4}+8 y_{1}^{2} y_{2}^{2}+4 y_{2}^{4}=$ $4\left(y_{1}^{2}+y_{2}^{2}\right)^{2}+4 y_{1}^{4}$ is also positive definite, thus 0 is a unstable critical point.

[^0]: *Any questions on solutions of HW4, please email me at rzhang@math.cuhk.edu.hk

