Suggested solutions to HW3 for MATH3270a

Rong ZHANG*

November 9, 2018

1. (4points=1point $\times 4$) Find the general solution to the following differential equations:
(a) $y^{(4)}+2 y^{(3)}+y^{\prime \prime}=0$;
(b) $y^{(4)}+8 y^{(2)}+16 y=0$;
(c) $y^{(3)}+y^{\prime \prime}+y^{\prime}+y=2 e^{-t}+4 t$;
(d) $y^{(4)}+2 y^{\prime \prime}+y=4+\cos 2 t$;

Solution:

(a) The corresponding characteristic equation is

$$
r^{4}+2 r^{3}+r^{2}=0
$$

then $r_{1}=r_{2}=0, r_{3}=r_{4}=-1$, so the general solution is

$$
y=C_{1}+C_{2} t+C_{3} e^{-t}+C_{4} t e^{-t}
$$

where C_{1}, C_{2}, C_{3} and C_{4} are arbitrary constants.
(b) The corresponding characteristic equation is

$$
r^{4}+8 r^{2}+16=0
$$

then $r= \pm 2 i$ with multiplicity 2 , so the general solution is

$$
y=C_{1} \cos (2 t)+C_{2} \sin (2 t)+C_{3} t \cos (2 t)+C_{4} t \sin (2 t)
$$

where C_{1}, C_{2}, C_{3} and C_{4} are arbitrary constants.
(c) The corresponding characteristic equation is

$$
r^{3}+r^{2}+r+1=0,
$$

then $r_{1}=-1, r_{2}=i, r_{3}=-i$, so the general solution to the corresponding homogeneous equation is

$$
y_{c}=C_{1} e^{-t}+C_{2} \cos t+C_{3} \sin t
$$

where C_{1}, C_{2} and C_{3} are arbitrary constants. By observation, it's promising to find a particular solution of the form ${ }^{1}$

$$
Y(t)=A t e^{-t}+B t+C
$$

[^0]where constants A, B, C are to be determined. Since
\[

$$
\begin{aligned}
Y^{\prime}(t) & =A(1-t) e^{-t}+B \\
Y^{\prime \prime}(t) & =A(t-2) e^{-t} \\
Y^{(3)} & =A(3-t) e^{-t}
\end{aligned}
$$
\]

then by substituting $Y(t)$ into the problem, we have

$$
2 e^{-t}+4 t=Y^{(3)}+Y^{\prime \prime}+Y^{\prime}+Y=2 A e^{-t}+B t+C+B
$$

which implies that $A=1, B=4, C=-4$. Therefore, the general solution is given by

$$
y=y_{c}+Y=C_{1} e^{-t}+C_{2} \cos t+C_{3} \sin t+t e^{-t}+4 t-4
$$

with arbitrary constants C_{1}, C_{2} and C_{3}.
(d) The corresponding characteristic equation is

$$
r^{4}+2 r^{2}+1=0
$$

then $r= \pm i$ with multiplicity 2 , so the general solution to the corresponding homogeneous equation is

$$
y_{c}=C_{1} \cos t+C_{2} \sin t+C_{3} t \cos t+C_{4} t \sin t
$$

where C_{1}, C_{2}, C_{3} and C_{4} are arbitrary constants. By observation, it's promising to find a particular solution of the form

$$
Y(t)=A+B \cos 2 t+C \sin 2 t
$$

where A, B, C are constants to be determined. Since

$$
\begin{aligned}
Y^{\prime}(t) & =-2 B \sin 2 t+2 C \cos 2 t \\
Y^{\prime \prime}(t) & =-4 B \cos 2 t-4 C \sin 2 t \\
Y^{(3)} & =8 B \sin 2 t-8 C \cos 2 t \\
Y^{(4)} & =16 B \cos 2 t+16 C \sin 2 t
\end{aligned}
$$

then by substituting $Y(t)$ into the problem, we have

$$
4+\cos 2 t=Y^{(4)}+2 Y^{\prime \prime}+Y=9 B \cos 2 t+9 C \sin 2 t+A
$$

which implies that $A=4, B=\frac{1}{9}, C=0$. Therefore, the general solution is given by

$$
y=y_{c}+Y=C_{1} \cos t+C_{2} \sin t+C_{3} t \cos t+C_{4} t \sin t+4+\frac{1}{9} \cos 2 t
$$

with arbitrary constants C_{1}, C_{2} and C_{3}.
2. (1points=0.5points $\times 2)$ Determine a suitable form of $Y(t)$ for using the method of undetermined coefficients to the following equations:
(a) $y^{(3)}-2 y^{\prime \prime}+y^{\prime}=3 t^{3}+2 e^{t}$;
(b) $y^{(4)}-y^{(3)}-y^{\prime \prime}+y^{\prime}=t^{2}+8+t \sin t$.

Solution:

(a) The corresponding characteristic equation is

$$
r^{3}-2 r^{2}+r=0,
$$

then $r_{1}=0, r_{2}=r_{3}=1$, so one particular solution is of the form

$$
Y(t)=\left(A t^{3}+B t^{2}+C t+D\right) t+E t^{2} e^{t}
$$

where A, B, C, D and E are constants to be determined.
(b) The corresponding characteristic equation is

$$
r^{4}-r^{3}-r^{2}+r=0
$$

then $r_{1}=0, r_{2}=r_{3}=1, r_{4}=-1$, so one particular solution is of the form

$$
Y(t)=\left(A t^{2}+B t+C\right) t+(D t+E) \cos t+(F t+G) \sin t
$$

where A, B, C, D, E, F and G are constants to be determined.
3. (2point) Write down a formula involving integrals for a particular solution $Y(t)$ of the differential equation

$$
y^{(3)}-3 y^{\prime \prime}+3 y^{\prime}-y=r(t),
$$

and use it to solve for $Y(t)$ when $r(t)=t^{-2} e^{t}$.
Solution: The corresponding characteristic equation is

$$
r^{3}-3 r^{2}+3 r-1=0,
$$

so $r_{1}=r_{2}=r_{3}=1$ and a fundamental set of solution to homogeneous equation is

$$
\left\{y_{1}=e^{t}, y_{2}=t e^{t}, y_{3}=t^{2} e^{t}\right\}
$$

and

$$
W\left[y_{1}, y_{2}, y_{3}\right](t)=\left|\begin{array}{ccc}
e^{t} & t e^{t} & t^{2} e^{t} \\
e^{t} & (t+1) e^{t} & \left(t^{2}+2 t\right) e^{t} \\
e^{t} & (t+2) e^{t} & \left(t^{2}+4 t+2\right) e^{t}
\end{array}\right|=2 e^{3 t} .
$$

Then we intend to find a particular solution to the non-homogeneous equation of the following form

$$
Y(t)=C_{1}(t) e^{t}+C_{2}(t) t e^{t}+C_{3}(t) t^{2} e^{t},
$$

with functions $C_{1}(t), C_{2}(t)$ and $C_{3}(t)$ to be determined. Since

$$
\begin{aligned}
Y^{\prime}(t)= & \left(C_{1}^{\prime}(t) y_{1}+C_{2}^{\prime}(t) y_{2}+C_{3}^{\prime}(t) y_{3}\right)+C_{1}(t) y_{1}^{\prime}+C_{2}(t) y_{2}^{\prime}+C_{3}(t) y_{3}^{\prime}, \\
Y^{\prime \prime}(t)= & \frac{d}{d t}\left(C_{1}^{\prime}(t) y_{1}+C_{2}^{\prime}(t) y_{2}+C_{3}^{\prime}(t) y_{3}\right)+C_{1}^{\prime}(t) y_{1}^{\prime}+C_{2}^{\prime}(t) y_{2}^{\prime}+C_{3}^{\prime}(t) y_{3}^{\prime} \\
& +C_{1}(t) y_{1}^{\prime \prime}+C_{2}(t) y_{2}^{\prime \prime}+C_{3}(t) y_{3}^{\prime \prime}, \\
Y^{(3)}= & \frac{d^{2}}{d t^{2}}\left(C_{1}^{\prime}(t) y_{1}+C_{2}^{\prime}(t) y_{2}+C_{3}^{\prime}(t) y_{3}\right)+\frac{d}{d t}\left(C_{1}^{\prime}(t) y_{1}^{\prime}+C_{2}^{\prime}(t) y_{2}^{\prime}+C_{3}^{\prime}(t) y_{3}^{\prime}\right) \\
& +C_{1}^{\prime}(t) y_{1}^{\prime \prime}+C_{2}^{\prime}(t) y_{2}^{\prime \prime}+C_{3}^{\prime}(t) y_{3}^{\prime \prime} \\
& +C_{1}(t) y_{1}^{\prime \prime \prime}+C_{2}(t) y_{2}^{\prime \prime \prime}+C_{3}(t) y_{3}^{\prime \prime},
\end{aligned}
$$

so if $C_{1}^{\prime}(t)$ and $C_{2}^{\prime}(t)$ satisfy the following algebriac system

$$
\begin{aligned}
C_{1}^{\prime}(t) y_{1}+C_{2}^{\prime}(t) y_{2}+C_{3}^{\prime}(t) y_{3} & =0 \\
C_{1}^{\prime}(t) y_{1}^{\prime}+C_{2}^{\prime}(t) y_{2}^{\prime}+C_{3}^{\prime}(t) y_{3}^{\prime} & =0 \\
C_{1}^{\prime}(t) y_{1}^{\prime \prime}+C_{2}^{\prime}(t) y_{2}^{\prime \prime}+C_{3}^{\prime}(t) y_{3}^{\prime \prime} & =r(t),
\end{aligned}
$$

then $Y(t)$ is a solution to $y^{(3)}-3 y^{\prime \prime}+3 y^{\prime}-y=r(t)$. By solving the above system, we have

$$
\begin{aligned}
C_{1}^{\prime}(t) & =r(t) \frac{W_{1}}{W\left[y_{1}, y_{2}, y_{3}\right]} \\
C_{2}^{\prime}(t) & =r(t) \frac{W_{2}}{W\left[y_{1}, y_{2}, y_{3}\right]} \\
C_{3}^{\prime}(t) & =r(t) \frac{W_{3}}{W\left[y_{1}, y_{2}, y_{3}\right]}
\end{aligned}
$$

where

$$
\begin{aligned}
W_{1} & =\left|\begin{array}{ccc}
0 & t e^{t} & t^{2} e^{t} \\
0 & (t+1) e^{t} & \left(t^{2}+2 t\right) e^{t} \\
1 & (t+2) e^{t} & \left(t^{2}+4 t+2\right) e^{t}
\end{array}\right|=t^{2} e^{2 t} \\
W_{2} & =\left|\begin{array}{ccc}
e^{t} & 0 & t^{2} e^{t} \\
e^{t} & 0 & \left(t^{2}+2 t\right) e^{t} \\
e^{t} & 1 & \left(t^{2}+4 t+2\right) e^{t}
\end{array}\right|=-2 t e^{2 t} \\
W_{3} & =\left|\begin{array}{ccc}
e^{t} & t e^{t} & 0 \\
e^{t} & (t+1) e^{t} & 0 \\
e^{t} & (t+2) e^{t} & 1
\end{array}\right|=e^{2 t}
\end{aligned}
$$

Thus a particular solution is of the following form

$$
\begin{aligned}
Y(t) & =C_{1}(t) e^{t}+C_{2}(t) t e^{t}+C_{3}(t) t^{2} e^{t} \\
& =e^{t} \int \frac{1}{2} r(t) t^{2} e^{-t} d t+t e^{t} \int-r(t) t e^{-t} d t+t^{2} e^{t} \int \frac{1}{2} r(t) e^{-t} d t
\end{aligned}
$$

If $r(t)=t^{-2} e^{t}$, then

$$
\begin{aligned}
Y(t) & =C_{1}(t) e^{t}+C_{2}(t) t e^{t}+C_{3}(t) t^{2} e^{t} \\
& =e^{t} \int \frac{1}{2} d t+t e^{t} \int-t^{-1} d t+t^{2} e^{t} \int \frac{1}{2} t^{-2} d t \\
& =-t \ln t e^{t}
\end{aligned}
$$

4. (3points) If y_{1} is a solution to the equation

$$
y^{(3)}+p_{2}(t) y^{\prime \prime}+p_{1}(t) y^{\prime}+p_{0}(t) y=0
$$

(a) (1point) use the substitution $y=y_{1}(t) v(t)$ to derive a second order ODE for $u=v^{\prime}$;
(b) (2points) use it to find the general solution for

$$
(2-t) y^{(3)}+(2 t-3) y^{\prime \prime}-t y^{\prime}+y=0
$$

for $t<2$ provided that $y_{1}(t)=e^{t}$ is a solution.

Solution:

(a) Let

$$
y=y_{1}(t) v(t)
$$

then $y^{\prime}=y_{1}^{\prime} v+y_{1} v^{\prime}, y^{\prime \prime}=y_{1}^{\prime \prime} v+2 y_{1}^{\prime} v^{\prime}+y_{1} v^{\prime \prime}$ and $y^{(3)}=y_{1}^{\prime \prime \prime} v+3 y_{1}^{\prime \prime} v^{\prime}+3 y_{1}^{\prime} v^{\prime \prime}+y_{1} v^{\prime \prime \prime}$. So the original ODE becomes

$$
y_{1} v^{\prime \prime \prime}+\left(3 y_{1}^{\prime}+p_{2} y_{1}\right) v^{\prime \prime}+\left(3 y_{1}^{\prime \prime}+2 p_{2} y_{1}^{\prime}+p_{1} y_{1}\right) v^{\prime}+\left(y_{1}^{\prime \prime \prime}+p_{2} y_{1}^{\prime \prime}+p_{1} y_{1}^{\prime}+p_{0} y_{1}\right) v=0
$$

Since y_{1} is a solution, then $u=v^{\prime}$ satisfies

$$
y_{1} u^{\prime \prime}+\left(3 y_{1}^{\prime}+p_{2} y_{1}\right) u^{\prime}+\left(3 y_{1}^{\prime \prime}+2 p_{2} y_{1}^{\prime}+p_{1} y_{1}\right) u=0
$$

which is a second order ODE for u.
(b) In this case, $y_{1}=e^{t}$ and

$$
p_{2}=\frac{2 t-3}{2-t}, p_{1}=\frac{-t}{2-t}, p_{0}=\frac{1}{2-t} .
$$

Let $y=y_{1} v$, we have

$$
v^{\prime \prime \prime}+\frac{3-t}{2-t} v^{\prime \prime}=0,
$$

which is a first order linear ODE of $v^{\prime \prime}$, then

$$
v^{\prime \prime}=C_{1} e^{-\int \frac{3-t}{2-t} d t}=C_{1}(t-2) e^{-t}
$$

and then

$$
v^{\prime}=C_{1} \int(t-2) e^{-t} d t+C_{2}=-C_{1}(t-1) e^{-t}+C_{2}
$$

and thus

$$
v=-C_{1} \int(t-1) e^{-t} d t+C_{2} t+C_{3}=C_{1} t e^{-t}+C_{2} t+C_{3}
$$

where C_{1}, C_{2}, C_{3} are arbitrary constants. Finally, the general solution is given by

$$
y=C_{1} t+C_{2} t e^{t}+C_{3} e^{t} .
$$

5. (5points=1point $\times \mathbf{5})$ [Method of Annihilators] Consider the following differential equation

$$
\begin{equation*}
\left(\frac{d}{d t}-2\right)^{3}\left(\frac{d}{d t}+1\right) y=3 e^{2 t}-t e^{-t} \tag{1}
\end{equation*}
$$

and try to solve a particular solution $Y(t)$.
(a) Show that the linear differential operators with constant coefficients obey the commutative law

$$
\left(\frac{d}{d t}-a\right)\left(\frac{d}{d t}-b\right) f=\left(\frac{d}{d t}-b\right)\left(\frac{d}{d t}-a\right) f
$$

for any twice-differentiable f and any constants a, b.
(b) Show that the operator $\left(\frac{d}{d t}-2\right)\left(\frac{d}{d t}+1\right)^{2}$ annihilates the terms on the R.H.S. of equation (1).
(c) By applying $\left(\frac{d}{d t}-2\right)\left(\frac{d}{d t}+1\right)^{2}$ to both side of equation (1), show that a particular solution $Y(t)$ should satisfy

$$
\left(\frac{d}{d t}-2\right)^{4}\left(\frac{d}{d t}+1\right)^{3} Y=0
$$

and hence show that

$$
Y=c_{1} e^{2 t}+c_{2} t e^{2 t}+c_{3} t^{2} e^{2 t}+c_{4} t^{3} e^{2 t}+c_{5} e^{-t}+c_{6} t e^{-t}+c_{7} t^{2} e^{-t}
$$

for some constants $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}$ to be determined.
(d) Solve a particular solution $Y(t)$ for equation (1).
(e) For each of $P_{k}(t), e^{\alpha t} P_{k}(t), e^{\alpha t} \sin (\mu t) P_{k}(t), e^{\alpha t} \cos (\mu t) P_{k}(t)$, write down a polynomial $f(r)$ such that $f\left(\frac{d}{d t}\right)$ is an annihilator for it.

Solution:

(a) It follows from simple calculations that

$$
\left(\frac{d}{d t}-a\right)\left(\frac{d}{d t}-b\right) f=\frac{d^{2}}{d t^{2}} f-(a+b) \frac{d}{d t} f+a b=\left(\frac{d}{d t}-b\right)\left(\frac{d}{d t}-a\right) f .
$$

(b) Note that

$$
\left(\frac{d}{d t}-2\right)\left(\frac{d}{d t}+1\right)^{2}\left(3 e^{2 t}-t e^{-t}\right)=0
$$

(c) It's obvious.
(d) Since $e^{2 t}, t e^{2 t}, t^{2} e^{2 t}$ and e^{-t} are solutions to the corresponding homogeneous equation, then $c_{1}=c_{2}=c_{3}=c_{5}=0$, and then

$$
\begin{aligned}
3 e^{2 t}-t e^{-t} & =\left(\frac{d}{d t}-2\right)^{3}\left(\frac{d}{d t}+1\right) Y=\left(\frac{d}{d t}-2\right)^{3}\left(\frac{d}{d t}+1\right)\left(c_{4} t^{3} e^{2 t}+c_{6} t e^{-t}+c_{7} t^{2} e^{-t}\right) \\
& =\left(\frac{d}{d t}-2\right)^{3}\left(3 c_{4} t^{2} e^{2 t}+3 c_{4} t^{3} e^{2 t}+c_{6} e^{-t}+2 c_{7} t e^{-t}\right) \\
& =\left(\frac{d}{d t}-2\right)^{3}\left(3 c_{4} t^{3} e^{2 t}+c_{6} e^{-t}+2 c_{7} t e^{-t}\right) \\
& =18 c_{4} e^{2 t}+\left(\frac{d}{d t}-2\right)^{3}\left(c_{6} e^{-t}+2 c_{7} t e^{-t}\right) \\
& =18 c_{4} e^{2 t}+\left(\frac{d}{d t}-2\right)^{2}\left(\left(2 c_{7}-3 c_{6}\right) e^{-t}-6 c_{7} t e^{-t}\right) \\
& =18 c_{4} e^{2 t}+\left(\frac{d}{d t}-2\right)\left(\left(9 c_{6}-12 c_{7}\right) e^{-t}+18 c_{7} t e^{-t}\right) \\
& =18 c_{4} e^{2 t}+\left(54 c_{7}-27 c_{6}\right) e^{-t}-54 c_{7} t e^{-t}
\end{aligned}
$$

which implies that $c_{4}=\frac{1}{6}, c_{6}=\frac{1}{27}, c_{7}=\frac{1}{54}$, so

$$
Y=\frac{1}{6} t^{3} e^{2 t}+\frac{1}{27} t e^{-t}+\frac{1}{54} t^{2} e^{-t}
$$

(e)

$$
\begin{array}{rr}
P_{k}(t): & f(t)=t^{k+1}, \\
e^{\alpha t} P_{k}(t): & f(t)=(t-\alpha)^{k+1}, \\
e^{\alpha t} \sin (\mu t) P_{k}(t): & f(t)=\left(t^{2}-2 \alpha t+\alpha^{2}+\mu^{2}\right)^{k+1}, \\
e^{\alpha t} \cos (\mu t) P_{k}(t): & f(t)=\left(t^{2}-2 \alpha t+\alpha^{2}+\mu^{2}\right)^{k+1} .
\end{array}
$$

[^0]: *Any questions on solutions of HW3, please email me at rzhang@math.cuhk.edu.hk
 ${ }^{1}$ Here we use the method of undetermined coefficients to find a particular solution, you can also try the method of variation of parameters to solve problem 1(c)(d) by yourself.

