Suggested solutions to HW2 for MATH3270a

Rong ZHANG*

October 12, 2018

1. $(\mathbf{4}$ points $=\mathbf{0} .5$ points $\times 8)$ Find the general solution to the following differential equations:
(a) $y^{\prime \prime}+8 y^{\prime}-9 y=0$;
(b) $9 y^{\prime \prime}+16 y=0$;
(c) $y^{\prime \prime}+4 y^{\prime}+4 y=0$;
(d) $y^{\prime \prime}-2 y^{\prime}+y=4 e^{-t}$;
(e) $y^{\prime \prime}+2 y^{\prime}-3 y=3 t e^{2 t}$;
(f) $2 y^{\prime \prime}+3 y^{\prime}+y=t^{2}+3 \cos t$;
(g) $y^{\prime \prime}+2 y^{\prime}+5 y=4 e^{-t} \cos 2 t$;
(h) $t^{2} y^{\prime \prime}+7 t y^{\prime}+5 y=3 t$, for $t>0$ provided that $y_{1}=t^{-1}$ is a solution to the corresponding homogeneous equation.

Solution:

(a) The corresponding characteristic equation is

$$
r^{2}+8 r-9=0
$$

then $r_{1}=-9$ and $r_{2}=1$, so the general solution is

$$
y=C_{1} e^{-9 t}+C_{2} e^{t}
$$

where C_{1} and C_{2} are arbitrary constants.
(b) The corresponding characteristic equation is

$$
9 r^{2}+16=0
$$

then $r= \pm \frac{4}{3} i$, so the general solution is

$$
y=C_{1} \cos \left(\frac{4}{3} t\right)+C_{2} \sin \left(\frac{4}{3} t\right)
$$

where C_{1} and C_{2} are arbitrary constants.
(c) The corresponding characteristic equation is

$$
r^{2}+4 r+4=0
$$

then $r_{1}=r_{2}=-2$, so the general solution is

$$
y=C_{1} e^{-2 t}+C_{2} t e^{-2 t}
$$

where C_{1} and C_{2} are arbitrary constants.

[^0](d) The corresponding characteristic equation is
$$
r^{2}+2 r+1=0
$$
then $r_{1}=r_{2}=-1$, so the general solution to the corresponding homogeneous equation is
$$
y_{c}=C_{1} e^{-t}+C_{2} t e^{-t}
$$
where C_{1} and C_{2} are arbitrary constants. By observation, it's promising to find a particular solution of the form ${ }^{1}$
$$
Y(t)=A t^{2} e^{-t}
$$
where constant A is to be determined. Since
\[

$$
\begin{aligned}
Y^{\prime}(t) & =A\left(2 t-t^{2}\right) e^{-t}, \\
Y^{\prime \prime}(t) & =A\left(2-4 t+t^{2}\right) e^{-t},
\end{aligned}
$$
\]

then by substituting $Y(t)$ into the problem, we have

$$
4 e^{-t}=Y^{\prime \prime}+2 Y^{\prime}+Y=2 A e^{-t}
$$

which implies that $A=2$. Therefore, the general solution is given by

$$
y=y_{c}+Y=C_{1} e^{-t}+C_{2} t e^{-t}+2 t^{2} e^{-t}
$$

with arbitrary constants C_{1} and C_{2}.
(e) The corresponding characteristic equation is

$$
r^{2}-2 r-3=0,
$$

then $r_{1}=-1, r_{2}=3$, so the general solution to the corresponding homogeneous equation is

$$
y_{c}=C_{1} e^{-t}+C_{2} e^{3 t}
$$

where C_{1} and C_{2} are arbitrary constants. By observation, it's promising to find a particular solution of the form

$$
Y(t)=(A+B t) e^{2 t}
$$

where A, B are constants to be determined. Since

$$
\begin{aligned}
Y^{\prime}(t) & =(B+2 A+2 B t) e^{2 t}, \\
Y^{\prime \prime}(t) & =(4 B+4 A+4 B t) e^{2 t},
\end{aligned}
$$

then by substituting $Y(t)$ into the problem, we have

$$
3 t e^{2 t}=Y^{\prime \prime}-2 Y^{\prime}-3 Y=(2 B-3 A-3 B t) e^{2 t}
$$

which implies that $A=-\frac{2}{3}, B=-1$. Therefore, the general solution is given by

$$
y=y_{c}+Y=C_{1} e^{-t}+C_{2} e^{3 t}-\left(\frac{2}{3}+t\right) e^{2 t}
$$

with arbitrary constants C_{1} and C_{2}.

[^1](f) The corresponding characteristic equation is
$$
2 r^{2}+3 r+1=0,
$$
then $r_{1}=-1, r_{2}=-\frac{1}{2}$, so the general solution to the corresponding homogeneous equation is
$$
y_{c}=C_{1} e^{-t}+C_{2} e^{-\frac{1}{2} t}
$$
where C_{1} and C_{2} are arbitrary constants. By observation, it's promising to find a particular solution of the form
$$
Y(t)=A t^{2}+B t+C+D \cos t+E \sin t
$$
where constants A, B, C, D, E are to be determined. Since
\[

$$
\begin{aligned}
Y^{\prime}(t) & =2 A t+B-D \sin t+E \cos t, \\
Y^{\prime \prime}(t) & =2 A-D \cos t-E \sin t,
\end{aligned}
$$
\]

then by substituting $Y(t)$ into the problem, we have

$$
\begin{aligned}
t^{2}+3 \cos t & =2 Y^{\prime \prime}+3 Y^{\prime}+Y \\
& =A t^{2}+(6 A+B) t+4 A+3 B+C+(3 E-D) \cos t-(E+3 D) \sin t
\end{aligned}
$$

which implies that $A=1, B=-6, C=14, D=-\frac{3}{10}, E=\frac{9}{10}$. Therefore, the general solution is given by

$$
y=y_{c}+Y=C_{1} e^{-t}+C_{2} e^{-\frac{1}{2} t}+t^{2}-6 t+14-\frac{3}{10} \cos t+\frac{9}{10} \sin t
$$

with arbitrary constants C_{1} and C_{2}.
(g) The corresponding characteristic equation is

$$
r^{2}+2 r+5=0
$$

then $r=-1 \pm 2 i$, so the general solution to the corresponding homogeneous equation is

$$
y_{c}=\left(C_{1} \cos 2 t+C_{2} \sin 2 t\right) e^{-t}
$$

where C_{1} and C_{2} are arbitrary constants. By observation, it's promising to find a particular solution of the form

$$
Y(t)=t(A \cos 2 t+B \sin 2 t) e^{-t}
$$

where constants A, B are to be determined. Since

$$
\begin{aligned}
Y^{\prime}(t)= & (A \cos 2 t+B \sin 2 t) e^{-t}+[(2 B-A) \cos 2 t-(2 A+B) \sin 2 t] t e^{-t}, \\
Y^{\prime \prime}(t)= & 2[(2 B-A) \cos 2 t-(2 A+B) \sin 2 t] e^{-t} \\
& +[-(3 A+4 B) \cos 2 t+(4 A-3 B) \sin 2 t] t e^{-t},
\end{aligned}
$$

then by substituting $Y(t)$ into the problem, we have

$$
\begin{aligned}
4 e^{-t} \cos 2 t & =Y^{\prime \prime}+2 Y^{\prime}+5 Y \\
& =4(B \cos 2 t-A \sin 2 t) e^{-t},
\end{aligned}
$$

which implies that $A=0, B=1$. Therefore, the general solution is given by

$$
y=y_{c}+Y=\left(C_{1} \cos 2 t+C_{2} \sin 2 t\right) e^{-t}+t \sin 2 t e^{-t}
$$

with arbitrary constants C_{1} and C_{2}.
(h) It's noted that $y_{1}=t^{-1}$ is a solution, then consider ${ }^{2}$

$$
z=t y
$$

we have $z^{\prime}=t y^{\prime}+y$ and $z^{\prime \prime}=t y^{\prime \prime}+2 y^{\prime}$. So the original ODE becomes

$$
t z^{\prime \prime}+5 z^{\prime}=3 t
$$

Multiplying the above equation by t^{4}, we we have

$$
\frac{d}{d t}\left(t^{5} z^{\prime}\right)=3 t^{5}
$$

which implies that

$$
t^{5} z^{\prime}=\frac{1}{2} t^{6}-4 C_{1}
$$

and thus

$$
z=\frac{1}{4} t^{2}+C_{1} t^{-4}+C_{2}
$$

where C_{1}, C_{2} are arbitrary constants. Finally, the general solution is given by

$$
y=\frac{1}{4} t+C_{1} t^{-5}+C_{2} t^{-1}
$$

2. (1points=0.5points $\times \mathbf{2})$ Determine a suitable form of $Y(t)$ for using the method of undetermined coefficients to the following equations:
(a) $y^{\prime \prime}-4 y^{\prime}+4 y=4 t^{2}+4 t e^{2 t}+t \sin 2 t$;
(b) $y^{\prime \prime}+3 y^{\prime}+2 y=e^{t}\left(t^{2}+1\right) \sin 2 t+3 e^{-t} \cos t+6 e^{t}$.

Solution:

(a) The corresponding characteristic equation is

$$
r^{2}-4 r+4=0
$$

then $r_{1}=r_{2}=2$, so one particular solution is of the form

$$
Y(t)=A t^{2}+B t+C+(D t+E) t^{2} e^{2 t}+(F t+G) \sin 2 t+(H t+I) \cos 2 t
$$

where A, B, C, D, E, F, G, H and I are constants to be determined.
(b) The corresponding characteristic equation is

$$
r^{2}+3 r+2=0
$$

then $r_{1}=-1, r_{2}=-2$, so one particular solution is of the form

$$
\begin{array}{r}
Y(t)=\left(A+B t+C t^{2}\right) e^{t} \sin 2 t+\left(D+E t+F t^{2}\right) e^{t} \cos 2 t \\
+(G \cos t+H \sin t) e^{-t}+I e^{t}
\end{array}
$$

where A, B, C, D, E, F, G, H and I are constants to be determined.
3. (1point) If $y(t)$ is a solution of the differential equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=r(t)$, where $r(t)$ is not always zero, show that $c y(t)$ is not a solution for the equation for $c \neq 1$.
Solution: It follows from direct computications that

$$
(c y)^{\prime \prime}+p(t)(c y)^{\prime}+q(t)(c y)=c\left(y^{\prime \prime}+p(t) y^{\prime}+q(t) y\right)=c r(t) \neq r(t)
$$

if $r(t)$ is not always zero and $c \neq 1$.

[^2]4. (1point) Can $y(t)=\sin t^{2}$ be a solution on an interval $I=(-\delta, \delta)$ to the equation $y^{\prime \prime}+p(t) y^{\prime}+$ $q(t) y=0$ with continuous coefficients $p(t)$ and $q(t)$? Explain your answer.
Solution: No; In fact, suppose $y(t)=\sin t^{2}$ is a solution then it satisfies the conditions $y(0)=$ $0, y^{\prime}(0)=0$. It's obvious that $y \equiv 0$ is a solution to
\[

$$
\begin{array}{r}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \\
y(0)=0, y^{\prime}(0)=0
\end{array}
$$
\]

Since all the coefficients $p(t), q(t)$ are continuous, then there exists a unique solution on some interval $I=(-\delta, \delta)$ to this problem by Existence and Uniqueness Theorem. However, $\sin t^{2} \neq 0$, which shows that $y(t)=\sin t^{2}$ can not be a solution on some neighborhood of 0 .
5. (1point) Assume that y_{1} and y_{2} is a fundamental set of solutions to $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$, and we let $y_{3}=a_{1} y_{1}+a_{2} y_{2}$ and $y_{4}=b_{1} y_{1}+b_{2} y_{2}$, where $a_{1}, a_{2}, b_{1}, b_{2}$ are constants. Show (0.5points) that

$$
W\left(y_{3}, y_{4}\right)=\left(a_{1} b_{2}-a_{2} b_{1}\right) W\left(y_{1}, y_{2}\right)
$$

and determine ($\mathbf{0 . 5 p o i n t s}$) the condition that y_{3}, y_{4} is again a fundamental set of solution.
Solution: It follows from direct computications that

$$
\begin{aligned}
W\left(y_{3}, y_{4}\right) & =\left|\begin{array}{ll}
y_{3} & y_{4} \\
y_{3}^{\prime} & y_{4}^{\prime}
\end{array}\right| \\
& =\left|\begin{array}{ll}
a_{1} y_{1}+a_{2} y_{2} & b_{1} y_{1}+b_{2} y_{2} \\
a_{1} y_{1}^{\prime}+a_{2} y_{2}^{\prime} & b_{1} y_{1}^{\prime}+b_{2} y_{2}^{\prime}
\end{array}\right| \\
& =\left|\begin{array}{ll}
a_{1} y_{1} & b_{1} y_{1}+b_{2} y_{2} \\
a_{1} y_{1}^{\prime} & b_{1} y_{1}^{\prime}+b_{2} y_{2}^{\prime}
\end{array}\right|+\left|\begin{array}{ll}
a_{2} y_{2} & b_{1} y_{1}+b_{2} y_{2} \\
a_{2} y_{2}^{\prime} & b_{1} y_{1}^{\prime}+b_{2} y_{2}^{\prime}
\end{array}\right| \\
& =\left|\begin{array}{ll}
a_{1} y_{1} & b_{2} y_{2} \\
a_{1} y_{1}^{\prime} & b_{2} y_{2}^{\prime}
\end{array}\right|+\left|\begin{array}{ll}
a_{2} y_{2} & b_{1} y_{1} \\
a_{2} y_{2}^{\prime} & b_{1} y_{1}^{\prime}
\end{array}\right| \\
& =a_{1} b_{2}\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|+a_{2} b_{1}\left|\begin{array}{ll}
y_{2} & y_{1} \\
y_{2}^{\prime} & y_{1}^{\prime}
\end{array}\right| \\
& =\left(a_{1} b_{2}-a_{2} b_{1}\right) W\left(y_{1}, y_{2}\right) .
\end{aligned}
$$

It's noted that any two solutions y_{1}, y_{2} form a fundamental set iff their Wronskian is nonzero $W\left(y_{1}, y_{2}\right) \neq 0$, so y_{3}, y_{4} is again a fundamental set of solution iff

$$
a_{1} b_{2}-a_{2} b_{1} \neq 0
$$

6. (1point) Given f, g, h be continuously differentiable function on an interval I, show that

$$
W(f g, f h)=f^{2} W(g, h)
$$

Solution: It follows from direct computications that

$$
\begin{aligned}
W(f g, f h) & =\left|\begin{array}{cc}
f g & f h \\
f^{\prime} g+f g^{\prime} & f^{\prime} h+f h^{\prime}
\end{array}\right| \\
& =\left|\begin{array}{cc}
f g & f h \\
f g^{\prime} & f h^{\prime}
\end{array}\right| \\
& =f^{2} W(g, h) .
\end{aligned}
$$

7. (2points=1point $\times \mathbf{2})$ Consider an equation of the form

$$
\begin{equation*}
t^{2} \frac{d^{2} y}{d t^{2}}+\alpha t \frac{d y}{d t}+\beta y=0 \tag{1}
\end{equation*}
$$

for $t>0$, where α, β are real constants.
(a) Using the substitution $x=\log t$, compute the terms $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ in terms of $\frac{d y}{d t}$ and $\frac{d^{2} y}{d t^{2}}$.
(b) Use the above subsitution to transform the equation into

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+(\alpha-1) \frac{d y}{d x}+\beta y=0, \tag{2}
\end{equation*}
$$

and conclude that $y_{1}(\log t), y_{2}(\log t)$ is a fundamental set of solutions to equation (1) if $y_{1}(x), y_{2}(x)$ is a fundamental set of solutions to equation (2).

Solution:

(a) It follows from chain rule and $\frac{d x}{d t}=\frac{1}{t}$ that

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y}{d t} \frac{d t}{d x}=t \frac{d y}{d t}, \\
\frac{d^{2} y}{d x^{2}} & =\frac{d}{d x}\left(t \frac{d y}{d t}\right)=t \frac{d}{d t}\left(t \frac{d y}{d t}\right) \\
& =t^{2} \frac{d^{2} y}{d t^{2}}+t \frac{d y}{d t} .
\end{aligned}
$$

(b) First, substituting the above relationship into (1) yields (2) directly.

Then it's obvious that $y_{1}(\log t), y_{2}(\log t)$ are solutions to (1), so it suffices to show that their Wronskian is nonzero. In fact,

$$
\begin{aligned}
W\left(y_{1}(\log t), y_{2}(\log t)\right) & =\left|\begin{array}{cc}
y_{1}(\log t) & y_{2}(\log t) \\
\frac{d}{d t} y_{1}(\log t) & \frac{d}{d t} y_{2}(\log t)
\end{array}\right| \\
& =\left|\begin{array}{cc}
y_{1}(\log t) & y_{2}(\log t) \\
\frac{1}{t} \frac{d}{d x} y_{1}(\log t) & \frac{1}{t} \frac{d}{d x} y_{2}(\log t)
\end{array}\right| \\
& =\frac{1}{t}\left|\begin{array}{cc}
y_{1}(\log t) & y_{2}(\log t) \\
\frac{d}{d x} y_{1}(\log t) & \frac{d}{d x} y_{2}(\log t)
\end{array}\right| \\
& =\frac{1}{t} W\left(y_{1}(x), y_{2}(x)\right) \neq 0 .
\end{aligned}
$$

8. (2points $=\mathbf{1}$ point $\times 2$) Consider the equation

$$
a y^{\prime \prime}+b y^{\prime}+c y=0 .
$$

(a) If all a, b, c are positive constants, show that all the solutions of the equation approach 0 as $t \rightarrow \infty$.
(b) If $a>0, c>0$ but $b=0$, show that all the solutions are bounded as $t \rightarrow \infty$.

Solution:

(a) The corresponding characteristic equation

$$
a r^{2}+b r+c=0,
$$

so $r=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.

- If $b^{2}-4 a c>0$, the general solution is given by

$$
y=C_{1} e^{\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}} t+C_{2} e^{-b-\frac{\sqrt{b^{2}-4 a c}}{2 a} t} .
$$

Since $r=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}<0$, so $y \rightarrow 0$ as $t \rightarrow \infty$;

- If $b^{2}-4 a c=0$, the general solution is given by

$$
y=\left(C_{1}+C_{2} t\right) e^{-\frac{b}{2 a} t},
$$

which implies that $y \rightarrow 0$ as $t \rightarrow \infty$;

- If $b^{2}-4 a c<0$, the general solution is given by

$$
y=\left(C_{1} \cos \left(\frac{\sqrt{4 a c-b^{2}}}{2 a} t\right)+C_{2} \sin \left(\frac{\sqrt{4 a c-b^{2}}}{2 a} t\right)\right) e^{-\frac{b}{2 a} t}
$$

which implies that $y \rightarrow 0$ as $t \rightarrow \infty$.
(b) If $a>0, c>0$ but $b=0$, the general solution is given by

$$
y=C_{1} \cos \left(\frac{\sqrt{4 a c}}{2 a} t\right)+C_{2} \sin \left(\frac{\sqrt{4 a c}}{2 a} t\right)
$$

which implies that for any t,

$$
|y(t)| \leq\left|C_{1}\right|+\left|C_{2}\right| .
$$

9. $(\mathbf{2}$ points $=\mathbf{1}$ point $\times \mathbf{2})$ Consider the differential equation

$$
y^{\prime \prime}+y=r(t) .
$$

(a) Deduce that

$$
Y(t):=\int_{t_{0}}^{t} \sin (t-s) r(s) d s
$$

is a solution to the initial value problem $y\left(t_{0}\right)=0$, and $y^{\prime}\left(t_{0}\right)=0$ using integral formula obtained from method of variation of parameter for non-homogeneous equation.
(b) Find the solution of the initial value problem $y\left(t_{0}\right)=1$, and $y^{\prime}\left(t_{0}\right)=2$ in terms of the particular solution $Y(t)$.

Solution:

(a) The corresponding characteristic equation is

$$
r^{2}+1=0,
$$

so $r= \pm i$ and the general solution to the corresponding homogeneous equation is

$$
y_{c}=C_{1} \cos t+C_{2} \sin t,
$$

with constants C_{1} and C_{2}. Then we intend to find a particular solution to the nonhomogeneous equation of the following form

$$
Y(t)=C_{1}(t) \cos t+C_{2}(t) \sin t,
$$

with functions $C_{1}(t)$ and $C_{2}(t)$ to be determined. Since

$$
\begin{aligned}
Y^{\prime}(t) & =\left(C_{1}^{\prime}(t) \cos t+C_{2}^{\prime}(t) \sin t\right)+C_{2}(t) \cos t-C_{1}(t) \sin t \\
Y^{\prime \prime}(t) & =\frac{d}{d t}\left(C_{1}^{\prime}(t) \cos t+C_{2}^{\prime}(t) \sin t\right)+\left(C_{2}^{\prime}(t)-C_{1}(t)\right) \cos t-\left(C_{1}^{\prime}(t)+C_{2}(t)\right) \sin t
\end{aligned}
$$

so if $C_{1}^{\prime}(t)$ and $C_{2}^{\prime}(t)$ satisfy the following algebriac system

$$
\begin{aligned}
C_{1}^{\prime}(t) \cos t+C_{2}^{\prime}(t) \sin t & =0 \\
-C_{1}^{\prime}(t) \sin t+C_{2}^{\prime}(t) \cos t & =r(t),
\end{aligned}
$$

then $Y(t)$ is a solution to $y^{\prime \prime}+y=r(t)$. By solving the above system, we have

$$
\begin{aligned}
& C_{1}^{\prime}(t)=-r(t) \sin t, \\
& C_{2}^{\prime}(t)=r(t) \cos t .
\end{aligned}
$$

Note that the initial data $y\left(t_{0}\right)=0, y^{\prime}\left(t_{0}\right)=0$ show that

$$
\begin{aligned}
& C_{1}\left(t_{0}\right) \cos t_{0}+C_{2}\left(t_{0}\right) \sin t_{0}=0 \\
& C_{2}\left(t_{0}\right) \cos t_{0}-C_{1}\left(t_{0}\right) \sin t_{0}=0
\end{aligned}
$$

thus

$$
C_{1}\left(t_{0}\right)=C_{2}\left(t_{0}\right)=0
$$

Then solving the equations of $C_{1}(t)$ and $C_{2}(t)$ gives

$$
\begin{aligned}
& C_{1}(t)=-\int_{t_{0}}^{t} r(s) \sin s d s \\
& C_{2}(t)=\int_{t_{0}}^{t} r(s) \cos s d s
\end{aligned}
$$

Finally, we can find a particular solution

$$
Y(t)=C_{1}(t) \cos t+C_{2}(t) \sin t=\int_{t_{0}}^{t} \sin (t-s) r(s) d s
$$

(b) First, we find the solution to the following initial value problem

$$
\begin{aligned}
& y_{1}^{\prime \prime}+y_{1}=0 \\
& y_{1}\left(t_{0}\right)=1, y_{1}^{\prime}\left(t_{0}\right)=2
\end{aligned}
$$

which is given by

$$
y_{1}=\left(\cos t_{0}-2 \sin t_{0}\right) \cos t+\left(2 \cos t_{0}+\sin t_{0}\right) \sin t=\cos \left(t-t_{0}\right)+2 \sin \left(t-t_{0}\right)
$$

Then, note that $Y(t)=\int_{t_{0}}^{t} \sin (t-s) r(s) d s$ is the solution to

$$
\begin{aligned}
& y_{2}^{\prime \prime}+y_{2}=r(t) \\
& y_{2}\left(t_{0}\right)=0, y_{2}^{\prime}\left(t_{0}\right)=0
\end{aligned}
$$

Hence,

$$
y(t)=y_{1}+Y(t)=\cos \left(t-t_{0}\right)+2 \sin \left(t-t_{0}\right)+\int_{t_{0}}^{t} \sin (t-s) r(s) d s
$$

is the solution to

$$
\begin{aligned}
& y^{\prime \prime}+y=r(t) \\
& y\left(t_{0}\right)=1, y^{\prime}\left(t_{0}\right)=2
\end{aligned}
$$

[^0]: *Any questions on solutions of HW2, please email me at rzhang@math.cuhk.edu.hk

[^1]: ${ }^{1}$ Here we use the method of undetermined coefficients to find a particular solution, you can also try the method of variation of parameters to solve problem $1(\mathrm{~d})(\mathrm{e})(\mathrm{f})(\mathrm{g})$ by yourself.

[^2]: ${ }^{2}$ You can also use Abel's theorem to find another solution to the corresponding homogeneous problem and then use variation of parameters method to find a particular solution for inhomogeneous problem.

