Suggested solutions to Homework 1 for MATH3270a

Rong ZHANG*

21 September, 2018

1. (4points=0.5points $\times 8)$ Solve the following initial-value problems:
(a) $t^{4} y^{\prime}+5 t^{3} y=e^{-t}, y(-1)=0$ for $t<0$;
(b) $y^{\prime}=\frac{y^{2}}{t}, y(1)=3$;
(c) $y+\left(2 t-3 y e^{y}\right) y^{\prime}=0, y(1)=0$;
(d) $y^{\prime}=t y^{3}\left(1+t^{2}\right)^{-1 / 2}, y(0)=1$;
(e) $y^{\prime}=\frac{y-4 t}{t-y}, y(1)=3$ for $t>0$;
(f) $y^{\prime}=y-2 y^{2}, y(1)=0$;
(f)' $y^{\prime}=y-2 y^{2}, y(1)=1$;
(g) $\left(3 t^{2} y+2 t y+y^{3}\right)+\left(t^{2}+y^{2}\right) y^{\prime}=0, y(0)=1$;
(h) $\left(t^{2}+3 t y+y^{2}\right)-t^{2} y^{\prime}=0, y(1)=0$ for $t>0$.

Solution:

(a) Multiplying the ODE by t gives

$$
\frac{d}{d t}\left(t^{5} y\right)=t e^{-t}
$$

then integrating both sides we have

$$
t^{5} y=\int_{-1}^{t} s e^{-s} d s
$$

where we have used the initial condition $y(-1)=0$. Thus the solution is given by for $t<0$

$$
y=-\frac{t+1}{t^{5}} e^{-t}
$$

Remark: It's noted that the maximal existence interval of the solution in this case is $(0, \infty)$ or $(-\infty, 0)$, which together with initial condition $y(-1)=0$ implies that the solution is unique only for $t<0$.
(b) This is a separable ODE. If $y \neq 0$, then rewrite the original ODE as

$$
\frac{d y}{y^{2}}=\frac{d t}{t}
$$

It follows from direct integration that

$$
-\frac{1}{y}=\ln |t|+C
$$

with constant C. Together with initial data $y(1)=3$, we can obtain the following solution

$$
y=-\frac{3}{3 \ln t-1}, \quad 0<t<e^{\frac{1}{3}} .
$$

Remark: By Existence and Uniqueness Theorem, this problem is uniquely solvable on some neighborhood of $(1,3)$.

[^0](c) The unique solution is $y \equiv 0$. It's trivial that 0 is a solution. In fact, we can show that the solution is unique by the following two ways:
Method 1: If $y \neq 0$, rewrite ODE as
$$
\frac{d t}{d y}=-\frac{2}{y} t+3 e^{y}
$$
which is a 1 st order linear ODE of t as a function of y, so the solution is given by
$$
e^{\int \frac{2}{y}} t=C+\int 3 e^{y} e^{\int \frac{2}{y}}
$$
that is,
\[

$$
\begin{equation*}
t y^{2}=C+3\left(y^{2}-2 y+2\right) e^{y} \tag{1}
\end{equation*}
$$

\]

which together with initial data $y(1)=0$ gives that

$$
t y^{2}=-6+3\left(y^{2}-2 y+2\right) e^{y}
$$

However, by Implicit Function Theorem, we cannot get a function $y(t)$ satisfying (1) and across the point $y(1)=0$.
Method 2: Rewrite the ODE as

$$
y^{\prime}=-\frac{y}{2 t-3 y e^{y}}=: f(t, y)
$$

then $f(t, y)$ and $f_{y}(t, y)$ are continuous around some neighborhood of $(1,0)$, so it's follows from Existence and Uniqueness Theorem that $y=0$ is the unique solution.
(d) This is a separable ODE, so rewrite as

$$
\frac{d y}{y^{3}}=\frac{t d t}{\sqrt{1+t^{2}}}
$$

then integrating both sides yields

$$
-\frac{1}{2 y^{2}}=\sqrt{1+t^{2}}+C
$$

Then constant C is determined by $y(0)=1$, so

$$
y=\frac{1}{\sqrt{3-2 \sqrt{1+t^{2}}}}
$$

for $-\frac{\sqrt{5}}{2}<t<\frac{\sqrt{5}}{2}$.
(e) It's noted that the source term $f(y, t)=\frac{y-4 t}{t-y}$ is homogeneous with t, y, that is, $f(k y, k t)=f(y, t)$ for any constant k, so we consider the new variable

$$
z=\frac{y}{t} .
$$

Then $z^{\prime}=\frac{y^{\prime}}{t}-\frac{z}{t}$ or $y^{\prime}=t z^{\prime}+z$, so the original ODE becomes

$$
t z^{\prime}+z=\frac{z-4}{1-z}
$$

or equivalently

$$
\frac{1-z}{z^{2}-4} d z=\frac{d t}{t}
$$

Integrating both sides gives

$$
\frac{1}{4} \ln \left|\frac{1}{(z+2)^{3}(z-2)}\right|=\ln |t|+C
$$

or equivalently

$$
(y+2 t)^{3}(y-2 t)=C
$$

Finally, by the initial condition $y(1)=3$, we have

$$
\begin{equation*}
(y+2 t)^{3}(y-2 t)=125 \tag{2}
\end{equation*}
$$

Remark: For this problem, we only give the implicit solution formula (3). It should be noted that the solution to Problem 1(d) satisfies (3), which can not imply that any $y(t)$ satisfying (3) is a solution to the original Problem 1(d).
(f) It's noted that $y=0$ is a solution and that $f(t, y)=y-2 y^{2}$ and $f_{y}=1-4 y$ are continuous on \mathbb{R}^{2}, then by Existence and Uniqueness Theorem, it's the unique one. ${ }^{1}$
(f)' This is a separable ODE, if $y-2 y^{2} \neq 0$, rewrite as

$$
\frac{d y}{y-2 y^{2}}=d t
$$

Then it follows from integrating both sides that

$$
\frac{y}{1-2 y}=C e^{t}
$$

with arbitrary constant C. Note that $y(1)=1$ implies that $C=-e^{-1}$ and

$$
y=\frac{e^{t-1}}{2 e^{t-1}-1}
$$

for $t>1-\ln 2$.
(g) Let $M=3 t^{2} y+2 t y+y^{3}$ and $N=t^{2}+y^{2}$, so $M_{y}=3 t^{2}+2 t+3 y^{2}, N_{t}=2 t$. It's noted that

$$
\frac{M_{y}-N_{t}}{N}=3,
$$

so it's promising to find an intergrating factor μ of the form $\mu=\mu(t)$. Then multiply the ODE by $\mu(t)$ such that it's exact, that is,

$$
(\mu M)_{y}=(\mu N)_{t},
$$

so $\mu(t)$ satisfies

$$
\mu^{\prime}=\frac{M_{y}-N_{t}}{N} \mu=3 \mu
$$

which implies $\mu(t)=e^{3 t}$. Since $(\mu M)_{y}=(\mu N)_{t}$, then there exists a function $\varphi(t, y)$ such that

$$
\begin{align*}
& \partial_{t} \varphi=\mu M=e^{3 t}\left(3 t^{2} y+2 t y+y^{3}\right) \tag{3}\\
& \partial_{y} \varphi=\mu N=e^{3 t}\left(t^{2}+y^{2}\right) \tag{4}
\end{align*}
$$

By solving (4) firstly, we have

$$
\begin{equation*}
\varphi(t, y)=e^{3 t}\left(t^{2} y+\frac{1}{3} y^{3}\right)+h(t) \tag{5}
\end{equation*}
$$

with some function $h(t)$. Then insert (5) into (3), we have

$$
h^{\prime}(t)=0
$$

which implies that we can take $h=0$. Finally, the general solution to the ODE is given by

$$
\varphi=e^{3 t}\left(t^{2} y+\frac{1}{3} y^{3}\right)=C .
$$

The constant C is determined by $y(0)=1$, so

$$
e^{3 t}\left(t^{2} y+\frac{1}{3} y^{3}\right)=\frac{1}{3}
$$

[^1](h) It's noted that the ODE can be wrriten as
$$
y^{\prime}=\frac{t^{2}+3 t y+y^{2}}{t^{2}}
$$

So if let $z=\frac{y}{t}$, then we have the following ODE

$$
t z^{\prime}+z=1+3 z+z^{2}
$$

which is separable, so the solution is given by

$$
-\frac{1}{z+1}=\ln |t|+C
$$

or equivalently

$$
y+t=-\frac{t}{\ln |t|+C}
$$

Then by the initial condition $y(1)=0$, we can obtain that

$$
y=-t \frac{\ln t}{\ln t-1}, \quad 0<t<e
$$

2. (2points=0.5points $\times 4)$ Determine whether each of the following equations is exact or not, if it is then find the solutions:
(a) $\left(e^{t} \sin y-3 y \sin t\right)+\left(e^{t} \cos y+3 \cos t\right) y^{\prime}=0$;
(b) $(t+2) \sin y+t \cos y y^{\prime}=0$;
(c) $\frac{t}{\left(t^{2}+y^{2}\right)^{3 / 2}}+\frac{y}{\left(t^{2}+y^{2}\right)^{3 / 2}} y^{\prime}=0$;
(d) $y^{\prime}=\frac{a y+b}{c y+d}$.

Solution:

(a) It's exact. In fact, let $M=e^{t} \sin y-3 y \sin t$ and $N=e^{t} \cos y+3 \cos t$, it's easy to check that

$$
M_{y}=e^{t} \cos y-3 \sin t=N_{t}
$$

Then by following the procedure in $1(\mathrm{~g})^{2}$, the general solution is given by

$$
e^{t} \sin y+3 y \cos t=C
$$

where C is an arbitrary constant.
(b) It's not exact. In fact, let $M=(t+2) \sin y$ and $N=t \cos y$, then $M_{y}=(t+2) \cos y \neq$ $\cos y=N_{t}$.
(c) It's exact. In fact, let $M=\frac{t}{\left(t^{2}+y^{2}\right)^{3 / 2}}$ and $N=\frac{y}{\left(t^{2}+y^{2}\right)^{3 / 2}}$, so

$$
M_{y}=-\frac{3 t y}{\left(t^{2}+y^{2}\right)^{5 / 2}}=N_{t}
$$

Then by following the procedure in $1(\mathrm{~g})$, the general solution is given by

$$
\frac{1}{\left(t^{2}+y^{2}\right)^{1 / 2}}=C
$$

where C is a constant to be determined by additional condition.

[^2](d) It's exact iff $a=0$. In fact, rewrite as
$$
a y+b-(c y+d) y^{\prime}=0,
$$
then let $M=a y+b$ and $N=-c y-d$, so
$$
M_{y}=N_{t} \Leftrightarrow a=0 .
$$

Let $a=0$. It's noted that this is a separable ODE, then the general solution is given by

$$
\frac{c}{2} y^{2}+d y=b t+C
$$

with arbitrary constant C.
3. (2points) Consider the general first order linear equation $y^{\prime}=p(t) y+g(t)$, show that

- (0.5points) if $y_{1}(t)$ is a solution to $y^{\prime}=p(t) y$, so is $c y_{1}(t)$ for any $c \in \mathbb{R}$;
- (0.5points) if $y_{2}(t)$ is a soluiton to $y^{\prime}=p(t) y+g(t)$, so is $c y_{1}(t)+y_{2}(t)$ for any $c \in \mathbb{R}$;
- (1point) all the solutions to $y^{\prime}=p(t) y+g(t)$ is of the form $c y_{1}(t)+y_{2}(t)$ for some $c \in \mathbb{R}$.

Solution:

- It's noted that for any $c \in \mathbb{R}$

$$
\frac{d}{d t}\left(c y_{1}(t)\right)=c y_{1}^{\prime}(t)=c p(t) y_{1}(t),
$$

so $c y_{1}(t)$ is a solution to $y^{\prime}=p(t) y$.

- It's noted that for any $c \in \mathbb{R}$

$$
\frac{d}{d t}\left(c y_{1}(t)+y_{2}(t)\right)=c y_{1}^{\prime}(t)+y_{2}^{\prime}(t)=c p(t) y_{1}+p(t) y_{2}+g(t)=p(t)\left(c y_{1}+y_{2}\right)+g(t)
$$

so $c y_{1}+y_{2}$ is a solution to $y^{\prime}=p(t) y+g(t)$.

- Let $y_{1} \neq 0$ be a solution to $y^{\prime}=p(t) y$, we first claim that all solutions to $y^{\prime}=p(t) y$ are of the form $y_{c}=c y_{1}$ for some constant $c \in \mathbb{R}$. In fact, consider $\frac{y_{c}}{y_{1}}$, it's easy to get that

$$
\frac{d}{d t}\left(\frac{y_{c}}{y_{1}}\right) \equiv 0,
$$

which implies that for any solution y_{c} to $y^{\prime}=p(t) y$ there exists some constant c such that $y_{c}=c y_{1}$.
Next, for any solution y to $y^{\prime}=p(t) y+g(t)$, it's noted that $z=y-y_{2}$ satisfies

$$
z^{\prime}=p(t) z .
$$

Then by the above claim, we know that there exists some $c \in \mathbb{R}$ such that $y-y_{2}=c y_{1}$.
4. (2points) Consider the differential equation

$$
M(t, y)+N(t, y) y^{\prime}=0 .
$$

Assume that we have $t M-y N \neq 0$, and the fraction $\frac{N_{t}-M_{y}}{t M-y N}=R(t y)$ depending only on the quantity ty only, then show (1point) that the above differential equation has an integrating factor of the form $\mu(t y)$ and find (1point) a general formula for this integrating factor.
Solution: Multiplying the ODE by $\mu(t y)$ gives that

$$
\mu(t y) M(t, y)+\mu(t y) N(t, y) y^{\prime}=0,
$$

then let $z=t y$, it's noted that

$$
(\mu M)_{y}=(\mu N)_{t} \Leftrightarrow \mu^{\prime}(z)=\mu(z) \frac{N_{t}-M_{y}}{t M-y N}=\mu(z) R(z)
$$

Now by solving $\mu^{\prime}(z)=\mu(z) R(z)$, we get

$$
\begin{equation*}
\mu=C e^{\int R(z) d z}=C e^{\int^{t y} R(z) d z} \tag{6}
\end{equation*}
$$

where $C \neq 0$ is an arbitrary constant. Thus in this way, we do find an intergrating factor with form $\mu(t y)$, more presicely, given by the fomula (6).

[^0]: *Any questions on solutions, please email me at rzhang@math.cuhk.edu.hk.

[^1]: ${ }^{1}$ You can also use Method 1 in Problem 1(c) to show that $y=0$ is the unique solution.

[^2]: ${ }^{2}$ We omit here, please expand the details by yourself.

