HOMEWORK IV (DEADLINE : 7TH DECEMBER, 2018)

ORDINARY DIFFERENTIAL EQUATIONS

Answer all questions:

(1) (3 points) If $x_{1}=y$ and $x_{2}=y^{\prime}$, and we consider the second order equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

corresponding to the system of $1^{\text {st }}$ order equations

$$
\begin{aligned}
x_{1}^{\prime} & =x_{2}, \\
x_{2}^{\prime} & =-q(t) x_{1}-p(t) x_{2} .
\end{aligned}
$$

(a) If we have a fundamental matrix $X(t)$ for the above system of equation, and a fundamental set of solutions y_{1}, y_{2} for the above second order equation, show that we must have $W\left(y_{1}, y_{2}\right)=c \operatorname{det}(X(t))$ for some non-zero constant c.
(b) In the case that $p(t)=p$ and $q(t)=q$ being constants, by writing the above system of $1^{\text {st }}$ order equations as $\frac{d \vec{x}}{d t}=A \cdot \vec{x}$ for some 2×2 constant matrix A, show that the characteristic polynomial of A agrees with the characteristic polynomial $f(r)=r^{2}+p r+q$ of the second order equation.
(2) (4 points) We consider the system

$$
\frac{d \vec{y}}{d t}=\left(\begin{array}{ll}
-1 & -1 \\
-\alpha & -1
\end{array}\right) \cdot \vec{y} .
$$

(a) Solve the above system for $\alpha=1 / 2$, and classifiy the critical $\overrightarrow{0}$ of the system as to type and stability;
(b) Repeat part (a) for $\alpha=2$;
(c) In parts (a) and (b), we notice that solutions to the system exhibit two different behaviours near the critical point $\overrightarrow{0}$. Find the eigenvalues of the matrix $\left(\begin{array}{ll}-1 & -1 \\ -\alpha & -1\end{array}\right)$ in terms of α, and determine the value of α between $1 / 2$ and 2 where the transition from one behaviour to other occurs.
(3) (8 points) Find the real-valued general solution to the following system of linear differential equations:
(a)

$$
\frac{d \vec{y}}{d t}=\left(\begin{array}{cc}
2 & 3 \\
-1 & -2
\end{array}\right) \cdot \vec{y}+\binom{e^{t}}{t} ;
$$

(b)

$$
\frac{d \vec{y}}{d t}=\left(\begin{array}{ccc}
-3 & 0 & 2 \\
1 & -1 & 0 \\
-2 & -1 & 0
\end{array}\right) \cdot \vec{y}
$$

(c)

$$
\frac{d \vec{y}}{d t}=\left(\begin{array}{ccc}
1 & -1 & 4 \\
3 & 2 & -1 \\
2 & 1 & -1
\end{array}\right) \cdot \vec{y}
$$

(d)

$$
\frac{d \vec{y}}{d t}=\left(\begin{array}{ccc}
5 & -3 & -2 \\
8 & -5 & -4 \\
-4 & 3 & 3
\end{array}\right) \cdot \vec{y} .
$$

(4) (3 points) Let A be a constant $n \times n$ matrix, and we consider the matrix valued differential equation $\Phi^{\prime}=A \cdot \Phi$, with initial value $\Phi\left(t_{0}\right)=B$ for some invertible matrix B.
(a) Use the existence and uniqueness theorem for linear system of $1^{\text {st }}$ order differential equations to show that the above initial value problem has a unique solution defining on \mathbb{R}.
(b) Suppose we let $\Phi(t)$ to be the unique solution to the initial value $\Phi(0)=I$ (here I is the $n \times n$ identity matrix), use the uniqueness theorem to show that $\Phi(t) \cdot \Phi(s)=\Phi(t+s)$.
(c) Show that $\Phi(t) \cdot \Phi(-t)=I$, and hence show that $\Phi(t-s)=\Phi(t) \cdot \Phi(s)^{-1}$.
(5) (6 points) Sketch the phase portrait for each of the linear system of $1^{\text {st }}$ order differential equations:
(a) $\frac{d \vec{y}}{d t}=\left(\begin{array}{cc}1 & 1 \\ -5 & -3\end{array}\right) \cdot \vec{y}$;
(b) $\frac{d \vec{y}}{d t}=\left(\begin{array}{cc}-1 & 0 \\ -1 & -1 / 4\end{array}\right) \cdot \vec{y}$;
(c) $\frac{d \vec{y}}{d t}=\left(\begin{array}{cc}3 & 1 \\ -4 & -1\end{array}\right) \cdot \vec{y}$.
(6) (6 points) For each of the following nonlinear system of $1^{\text {st }}$ order differential equations:

- Find all critical points of the above system and the corresponding linear system near each critical points;
- Determine the type and stability of the linear system associated to each critical points;
- Draw the phase portrait for the nonlinear system of differential equations.
(a)

$$
\begin{aligned}
& \frac{d y_{1}}{d t}=\left(3+y_{1}\right)\left(y_{2}-y_{1}\right) ; \\
& \frac{d y_{2}}{d t}=\left(4-y_{1}\right)\left(y_{2}+y_{1}\right) .
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \frac{d y_{1}}{d t}=y_{1}\left(1-y_{1}-y_{2}\right) ; \\
& \frac{d y_{2}}{d t}=y_{2}\left(2-y_{1}-y_{2}\right) .
\end{aligned}
$$

(7) (4 points) Use Liapunov's function to show the stability of the following system of differential equations:
(a) For the system

$$
\begin{aligned}
& \frac{d y_{1}}{d t}=-\frac{1}{2} y_{1}^{3}+2 y_{1} y_{2}^{2} \\
& \frac{d y_{2}}{d t}=-2 y_{2}^{3},
\end{aligned}
$$

show that $\overrightarrow{0}$ is an asymptotically stable critical point.
(b) For the system

$$
\begin{aligned}
& \frac{d y_{1}}{d t}=2 y_{1}^{3}-y_{2}^{3} \\
& \frac{d y_{2}}{d t}=2 y_{1} y_{2}^{2}+4 y_{1}^{2} y_{2}+2 y_{2}^{3},
\end{aligned}
$$

show that $\overrightarrow{0}$ is an unstable critical point.
End of Homework 4

