HOMEWORK III (DEADLINE : 9TH NOVEMBER, 2018)

ORDINARY DIFFERENTIAL EQUATIONS

Answer all questions:

(1) (4 points)Find the general solution to the following differential equations:
(a) $y^{(4)}+2 y^{(3)}+y^{(2)}=0$;
(b) $y^{(4)}+8 y^{(2)}+16 y=0$;
(c) $y^{(3)}+y^{(2)}+y^{(1)}+y=2 e^{-t}+4 t$;
(d) $y^{(4)}+2 y^{(2)}+y=4+\cos (2 t)$.
(2) (1 point) Determine a suitable form of $Y(t)$ for using the method of undetermined coefficients to the following equations (you don't have to solve the equation explicitly, but simply guess the form of $Y(t)$ to be used):
(a) $y^{(3)}-2 y^{(2)}+y^{(1)}=3 t^{3}+2 e^{t}$;
(b) $y^{(4)}-y^{(3)}-y^{(2)}+y^{(1)}=t^{2}+8+t \sin (t)$.
(3) (2 point) Write down a formula involving integrals for a particular solution $Y(t)$ of the differential equation

$$
y^{(3)}-3 y^{(2)}+3 y^{(1)}-y=r(t),
$$

and use it to solve for $Y(t)$ when $r(t)=t^{-2} e^{t}$.
(4) (3 points) If y_{1} is a solution to the equation

$$
y^{(3)}+p_{2}(t) y^{(2)}+p_{1}(t) y^{(1)}+p_{0}(t) y=0,
$$

(a) use the substitution $y=y_{1}(t) v(t)$ to derve a second order ODE for $u=v^{\prime}$;
(b) use it to solve for the general solution for

$$
(2-t) y^{(3)}+(2 t-3) y^{(2)}-t y^{(1)}+y=0
$$

for $t<2$ provided that $y_{1}(t)=e^{t}$ is a solution.
(5) (5 points) [Method of Annihilators] In this question, we will consider another way of arriving at a guess for the form of a particular solution $Y(t)$ for solving a inhomogeneous linear equations. This start with the observation that any terms of the from $P_{k}(t)=A_{0}+\cdots+A_{k} t^{k}$, or $e^{\alpha t} P_{k}(t)$ or $e^{\alpha t} \sin (\mu t) P_{k}(t)$ or $e^{\alpha t} \cos (\mu t) P_{k}(t)$ can be viewed as solution of certain linear homogeneous differential equations with constant coefficient.

For example, we can treat e^{-t} as a solution for the equation $\left(\frac{d}{d t}+1\right) y=0$, and in that case we say the differential operator $\left(\frac{d}{d t}+1\right)$ annihilate, or to be an annihilator of e^{-t}. In the same way, $\frac{d^{2}}{d t^{2}}+4$ is an annihilator of $\sin (2 t)$ or $\cos (2 t)$, and $\left(\frac{d}{d t}-3\right)^{2}=\frac{d^{2}}{d t^{2}}-6 \frac{d}{d t}+9$ is an annihilator of $e^{3 t}$ or $t e^{3 t}$, and so forth.

To domenstrate how it works, we consider the following differential equation

$$
\left(\frac{d}{d t}-2\right)^{3}\left(\frac{d}{d t}+1\right) y=3 e^{2 t}-t e^{-t}
$$

and try to solve for a particular solution $Y(t)$.
(a) Show that the linear differential operators with constant coefficients obey the commutative law

$$
\left(\frac{d}{d t}-a\right)\left(\frac{d}{d t}-b\right) f=\left(\frac{d}{d t}-b\right)\left(\frac{d}{d t}-a\right) f
$$

for any twice-differentiable f and any constants a, b.
(b) Show that the operator $\left(\frac{d}{d t}-2\right)\left(\frac{d}{d t}+1\right)^{2}$ annihilates the terms on the R.H.S. of equation 0.1 .
(c) By applying $\left(\frac{d}{d t}-2\right)\left(\frac{d}{d t}+1\right)^{2}$ to both side of equation 0.1), show that a particular solution $Y(t)$ should satisfy

$$
\left(\frac{d}{d t}-2\right)^{4}\left(\frac{d}{d t}+1\right)^{3} Y=0
$$

and hence show that
$Y(t)=c_{1} e^{2 t}+c_{2} t e^{2 t}+c_{3} t^{2} e^{2 t}+c_{4} t^{3} e^{2 t}+c_{5} e^{-t}+c_{6} t e^{-t}+c_{7} t^{2} e^{-t}$, for some constant $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}$ to be determined.
(d) Observe that $e^{2 t}, t e^{2 t}, t^{2} e^{2 t}$ and e^{-t} are solutions to the homogeneous equation corresponding to equation (0.1), and hence these terms are not useful in solving for a particular solution. Therefore, we choose $c_{1}=c_{2}=c_{3}=c_{5}=0$ and solve a particular solution $Y(t)$ for equation (0.1).
(e) For each of $P_{k}(t), e^{\alpha t} P_{k}(t), e^{\alpha t} \sin (\mu t) P_{k}(t), e^{\alpha t} \cos (\mu t) P_{k}(t)$, write down a polynomial $f(r)$ such that $f\left(\frac{d}{d t}\right)$ is an annihilator for it (It is not necessary to expand the polynomial).

End of Homework 3

