HOMEWORK II (DEADLINE : 12ND OCTOBER, 2018)

ORDINARY DIFFERENTIAL EQUATIONS

Answer all questions:

(1) (4 points) Find the general solution to the following differential equations:
(a) $y^{\prime \prime}+8 y^{\prime}-9 y=0$;
(b) $9 y^{\prime \prime}+16 y=0$;
(c) $y^{\prime \prime}+4 y^{\prime}+4 y=0$;
(d) $y^{\prime \prime}+2 y^{\prime}+y=4 e^{-t}$;
(e) $y^{\prime \prime}-2 y^{\prime}-3 y=3 t e^{2 t}$;
(f) $2 y^{\prime \prime}+3 y^{\prime}+y=t^{2}+3 \cos (t)$;
(h) $y^{\prime \prime}+2 y^{\prime}+5 y=4 e^{-t} \cos (2 t)$.
(i) $t^{2} y^{\prime \prime}+7 t y^{\prime}+5 y=3 t$, for $t>0$ provided that $y_{1}(t)=t^{-1}$ is a solution to the homogeneous equation $t^{2} y^{\prime \prime}+7 t y^{\prime}+5 y=0$.
(2) (1 point) Determine a suitable form of $Y(t)$ for using the method of undetermined coefficients to the following equations (you don't have to solve the equation explicitly, but simply guess the form of $Y(t)$ to be used):
(a) $y^{\prime \prime}-4 y^{\prime}+4 y=4 t^{2}+4 t e^{2 t}+t \sin (2 t)$;
(b) $y^{\prime \prime}+3 y^{\prime}+2 y=e^{t}\left(t^{2}+1\right) \sin (2 t)+3 e^{-t} \cos (t)+6 e^{t}$.
(3) (1 point) If $y(t)$ is a solution of the differential equation $y^{\prime \prime}+p(t) y^{\prime}+$ $q(t) y=r(t)$, where $r(t)$ is not always zero, show that $c y(t)$ is not a solution for the equation for $c \neq 1$.
(4) (1 point) Can $y(t)=\sin \left(t^{2}\right)$ be a solution on an interval $I=(-\delta, \delta)$ to the equation $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$ with continuous coefficients $p(t)$ and $q(t)$? Explain your answer.
(5) (1 point) Assume that y_{1} and y_{2} is a fundamental set of solutions to $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$, and we let $y_{3}=a_{1} y_{1}+a_{2} y_{2}$ and $y_{4}=$ $b_{1} y_{1}+b_{2} y_{2}$, where $a_{1}, a_{2}, b_{1}, b_{2}$ are constants. Show that

$$
W\left(y_{3}, y_{4}\right)=\left(a_{1} b_{2}-a_{2} b_{1}\right) W\left(y_{1}, y_{2}\right)
$$

and determine the condition that y_{3}, y_{4} is again a fundamental set of solutions.
(6) (1 point) Given f, g, h be continuously differentiable function on an interval I, show that

$$
W(f g, f h)=f^{2} W(g, h)
$$

(7) (2 points) Consider an equation of the form

$$
\begin{equation*}
t^{2} \frac{d^{2} y}{d t^{2}}+\alpha t \frac{d y}{d t}+\beta y=0 \tag{0.1}
\end{equation*}
$$

for $t>0$, where α, β are real constants.
(a) Using the subsitution $x=\log (t)$, compute the terms $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ in terms of $\frac{d y}{d t}$ and $\frac{d^{2} y}{d t^{2}}$.
(b) Use the above subsitution to transform the equation into

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+(\alpha-1) \frac{d y}{d x}+\beta y=0 \tag{0.2}
\end{equation*}
$$

and conclude that $y_{1}(\log (t)), y_{2}(\log (t))$ is a fundamental set of solutions to equation (0.1) if $y_{1}(x), y_{2}(x)$ is a fundamental set of solutions to equation (0.2).
(8) (2 points) Consider the equation

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

(a) If all a, b, c are positive constants, show that all the solutions of the equation approach 0 as $t \rightarrow \infty$.
(b) If $a>0, c>0$ but $b=0$, show that all the solutions are bounded as $t \rightarrow \infty$.
(9) (2 points) Consider the differential equation

$$
y^{\prime \prime}+y=r(t)
$$

(a) Deduce that

$$
Y(t):=\int_{t_{0}}^{t} \sin (t-s) r(s) d s
$$

is a solution to the initial value problem $y\left(t_{0}\right)=0, y^{\prime}\left(t_{0}\right)=$ 0 using integral formula obtain from method of variation of parameter for non-homogeneous equation.
(b) Find the solution of the initial value problem $y\left(t_{0}\right)=1$, and $y^{\prime}\left(t_{0}\right)=2$ in terms of the particular solution $Y(t)$.

End of Homework 1

