HOMEWORK I (DEADLINE : 21ST SEPTEMBER, 2018)

ORDINARY DIFFERENTIAL EQUATIONS

Answer all questions:

(1) (4 points) Solve the following initial value problems (implicit solutions is also accepted):
(a) $t^{4} y^{\prime}+5 t^{3} y=e^{-t}, y(-1)=0$, for $t<0$.
(b) $y^{\prime}=y^{2} / t, y(1)=3$.
(c) $y+\left(2 t-3 y e^{y}\right) y^{\prime}=0, y(1)=0$.
(d) $y^{\prime}=t y^{3}\left(1+t^{2}\right)^{-1 / 2}, y(0)=1$.
(e) $y^{\prime}=\frac{y-4 t}{t-y}, y(1)=3$, for $t>0$.
(f) $y^{\prime}=y-2 y^{2}, y(1)=1$.
(g) $\left(3 t^{2} y+2 t y+y^{3}\right)+\left(t^{2}+y^{2}\right) y^{\prime}=0, y(0)=1$.
(h) $\left(t^{2}+3 t y+y^{2}\right)-t^{2} y^{\prime}=0, y(1)=0$, for $t>0$.
(2) (2 point) Determine whether each of the following equations is exact or not, if it is then find the solution:
(a) $\left(e^{t} \sin (y)-3 y \sin (t)\right)+\left(e^{t} \cos (y)+3 \cos (t)\right) y^{\prime}=0$
(b) $(t+2) \sin (y)+(t \cos (y)) y^{\prime}=0$
(c) $\frac{t}{\left(t^{2}+y^{2}\right)^{3 / 2}}+\frac{y}{\left(t^{2}+y^{2}\right)^{3 / 2}} y^{\prime}=0$
(d) $y^{\prime}=\frac{a y+b}{c y+d}$
(3) (2 points) Consider the general first order linear equation $y^{\prime}=$ $p(t) y+g(t)$, show that

- if $y_{1}(t)$ is a solution to $y^{\prime}=p(t) y$, then $c y_{1}(t)$ is also a solution to $y^{\prime}=p(t) y$ for $c \in \mathbb{R}$;
- if $y_{2}(t)$ is a solution to $y^{\prime}=p(t) y+g(t)$, then $c y_{1}(t)+y_{2}(t)$ is also a solution to the equation $y^{\prime}=p(t) y+g(t)$;
- all the solutions to $y^{\prime}=p(t) y+g(t)$ is of the form $c y_{1}(t)+y_{2}(t)$ for some $c \in \mathbb{R}$.
(4) (2 points) Consider the differential equation

$$
\begin{equation*}
M(t, y)+N(t, y) y^{\prime}=0 . \tag{0.1}
\end{equation*}
$$

Assume that we have $t M-y N \neq 0$, and the fraction $\left(\frac{d N}{d t}-\frac{d M}{d y}\right) /(t M-$ $y N)=R(t y)$ depending only on the quantity ty only, then show that the differential equation 0.1 has a integrating factor of the form $\mu(t y)$ and find a general formula for this integrating factor.

End of Homework 1

