HOMEWORK I (DEADLINE : 21ST SEPTEMBER, 2018)

ORDINARY DIFFERENTIAL EQUATIONS

Answer all questions:

- (1) (4 points) Solve the following initial value problems (implicit solutions is also accepted):
 (a) t⁴y' + 5t³y = e^{-t}, y(-1) = 0, for t < 0.
 - (b) $y' = y^2/t$, y(1) = 3.
 - (c) $y + (2t 3ye^y)y' = 0, y(1) = 0.$

(d)
$$y' = ty^3(1+t^2)^{-1/2}, y(0) = 1.$$

(e)
$$y' = \frac{y-4t}{t-y}, y(1) = 3$$
, for $t > 0$.

- (f) $y' = y 2y^2$, y(1) = 1.
- (g) $(3t^2y + 2ty + y^3) + (t^2 + y^2)y' = 0, y(0) = 1.$
- (h) $(t^2 + 3ty + y^2) t^2y' = 0, y(1) = 0$, for t > 0.
- (2) (2 point) **Determine** whether each of the following equations is exact or not, if it is then **find** the solution:
 - (a) $(e^t \sin(y) 3y \sin(t)) + (e^t \cos(y) + 3\cos(t))y' = 0$
 - (b) $(t+2)\sin(y) + (t\cos(y))y' = 0$

(c)
$$\frac{t}{(t^2+y^2)^{3/2}} + \frac{y}{(t^2+y^2)^{3/2}}y' = 0$$

(d) $y' = \frac{ay+b}{cy+d}$

- (3) (2 points) Consider the general first order linear equation y' = p(t)y + g(t), show that
 - if $y_1(t)$ is a solution to y' = p(t)y, then $cy_1(t)$ is also a solution to y' = p(t)y for $c \in \mathbb{R}$;

- if $y_2(t)$ is a solution to y' = p(t)y + g(t), then $cy_1(t) + y_2(t)$ is also a solution to the equation y' = p(t)y + g(t);
- all the solutions to y' = p(t)y + g(t) is of the form $cy_1(t) + y_2(t)$ for some $c \in \mathbb{R}$.

(4) (2 points) Consider the differential equation

(0.1)
$$M(t,y) + N(t,y)y' = 0.$$

Assume that we have $tM-yN \neq 0$, and the fraction $(\frac{dN}{dt}-\frac{dM}{dy})/(tM-yN) = R(ty)$ depending only on the quantity ty only, then **show** that the differential equation 0.1 has a integrating factor of the form $\mu(ty)$ and **find** a general formula for this integrating factor.

End of Homework 1