MATH3230A Numerical Analysis

Tutorial 9 with solution

1 Recall:

Numerical Integration: We are going to estimate the integral

$$\int_{a}^{b} f(x) dx$$

1. Newton-Cotes Quadrature Rule

(a) Idea: For equally spaced set of points x_i , to find $\alpha_0, \alpha_1, \dots, \alpha_n$ such that for any polynomial of degree $\leq n$, we have

$$\int_{a}^{b} p(x)dx = \alpha_0 p(x_0) + \alpha_1 p(x_1) + \dots + \alpha_n p(x_n)$$

By uniqueess of polynomial interpolation, we may pick $\alpha_i = \int_a^b l_i(x) dx$ using Lagrange polynomials. (b) For n = 2, we have the Simpson's Rule:

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{6} \left\{ f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right\}$$

The corresponding error:

$$\left|\int_{a}^{b} f(x)dx - \frac{b-a}{6}\left\{f(a) + 4f(\frac{a+b}{2}) + f(b)\right\}\right| \le \frac{49}{2880}K(b-a)^{5}$$

where $max_{x\in[a,b]}|f^{(4)}(x)| \leq K$

(c) The Composite Simpson's Rule is

$$\int_{a}^{b} f(x)dx \approx \frac{h}{6} \sum_{i=1}^{n} \left\{ f(x_{i-1}) + 4f\left(\frac{x_{i-1} + x_{i}}{2}\right) + f(x_{i}) \right\}$$

The corresponding error:

$$\left|\int_{a}^{b} f(x) - \frac{h}{6}\sum_{i=1}^{n} \left\{ f(x_{i-1} + 4f\left(\frac{x_{i-1} + x_{i}}{2}\right) + f(x_{i}) \right\} \right| = \frac{49K}{2880}(b-a)h^{4}$$

2. Gaussian Quadrature Rule

(a) The Gaussian Quadrature rule satisfies

$$\int_{a}^{b} p(x)dx = \sum_{i=0}^{n} \alpha_{i} p(x_{i}) \text{ for all polynomials of degree} \le 2n+1$$

Here we need to determine both points x_i and the coefficients α_i . In total there are (2n + 2) unknowns. 2 point Gaussian quadrature rule on [-1, 1]:

$$\int_{-1}^{1} f(x)dx \approx f(\frac{-1}{\sqrt{3}}) + f(\frac{1}{\sqrt{3}})$$

(b) Legendre polynomial $P_n(x)$ is defined recursively by:

$$P_0(x) = 1$$
, $P_1(x) = x$, $(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x)$

The procedure of deriving Gauss-Legendre quadrature rule is as:

- i. Let $\{x_i\}$ be roots of $P_{n+1}(x)$.
- ii. Set $\alpha_i = \int_{-1}^1 l_i(x) dx = \int_{-1}^1 \prod_{j \neq i, j=0}^n \frac{x x_j}{x_i x_j} dx$. iii. Then the rule is $\int_{-1}^1 f(x) dx \approx \sum_{i=0}^n \alpha_i f(x_i)$
- The Gauss-Legendre quadrature rule is exact for polynomial with degree $\leq 2n + 1$.
- (c) With Gauss-Legendre quadrature defined above, suppose $f \in C^{2n+2}[-1,1]$, $\max_{x \in [-1,1]} |f^{2n+2}(x)| \leq K$ we have:

$$\left|\int_{-1}^{1} f(x)dx - \sum_{i=0}^{n} \alpha_{i}f(x_{i})\right| \leq \frac{K}{(2n+2)!} \int_{-1}^{1} (x-x_{0})^{2} \cdots (x-x_{n})^{2} dx$$

(d) For $f:[a,b] \to \mathbb{R}$, we apply the linear transformation: $y = h(x) = \frac{a+b}{2} + \frac{b-a}{2}x$.

2 **Exercises:**

Please submit solutions of problems with star(*) before 6:30PM on Wednesday and finish the rest by yourself.

- 1. * Consider the following questions:
 - (a) Find $\alpha_0, \alpha_1, \alpha_2$ and α_3 such that the quadrature formula

$$\int_{-1}^{1} g(t)dt \approx \alpha_0 g(-1) + \alpha_1 g(-\frac{1}{3}) + \alpha_2 g(\frac{1}{3}) + \alpha_3 g(1)$$

is exact for all polynomials of degree less than or equal to 3.

(b) Using the quadrature formula obtained in (a), derive the corresponding quadrature formula for computing

$$\int_{a}^{b} g(x) dx$$

(Using the transformation introduced in P127)

Solution. (a) Let $g(t) = 1, t, t^2, t^3$ respectively, then we have

$$\int_{-1}^{1} 1dt = 2 = \alpha_0 + \alpha_1 + \alpha_2 + \alpha_3$$
$$\int_{-1}^{1} tdt = 0 = \alpha_0(-1) + \alpha_1(-\frac{1}{3}) + \alpha_2(\frac{1}{3}) + \alpha_3$$
$$\int_{-1}^{1} t^2 dt = \frac{2}{3} = \alpha_0(-1)^2 + \alpha_1(-\frac{1}{3})^2 + \alpha_2(\frac{1}{3})^2 + \alpha_3$$
$$\int_{-1}^{1} t^3 dt = 0 = \alpha_0(-1)^3 + \alpha_1(-\frac{1}{3})^3 + \alpha_2(\frac{1}{3})^3 + \alpha_3$$

Solving the above equations, we have

$$\alpha_0 = \frac{1}{4}, \alpha_1 = \frac{3}{4}, \alpha_2 = \frac{3}{4} \quad and \quad \alpha_3 = \frac{1}{4}.$$

(b) Let $x = a + \frac{b-a}{2}(t+1)$. We have

$$\begin{split} \int_{a}^{b} g(x)dx &= \int_{-1}^{1} g[a + \frac{b-a}{2}(t+1)]\frac{(b-a)}{2}dt \\ &\approx \frac{(b-a)}{2}[\frac{1}{4}g(a) + \frac{3}{4}(a + \frac{(b-a)}{3}) + \frac{3}{4}g(a + \frac{2(b-a)}{3}) + \frac{1}{4}g(b)] \\ &= \frac{b-a}{2}\left[\frac{1}{4}g(a) + \frac{3}{4}g\left(\frac{2a+b}{3}\right) + \frac{3}{4}g\left(\frac{a+2b}{3}\right) + \frac{1}{4}g(b)\right] \end{split}$$

2. * Let f(x) be a real function defined on [0,1], $x_0 = 0$, $x_1 = \frac{1}{3}$ and $x_2 = 1$.

(a) Consider the quadratic polynomial p(x):

$$p(x) = \alpha_0(x - x_1)(x - x_2) + \alpha_1(x - x_0)(x - x_2) + \alpha_2(x - x_0)(x - x_1)$$
(1)

Compute the integral

$$\int_0^1 p(x) dx,$$

and write down the result explicitly in terms of α_0 , α_1 and α_2 .

(b) If the polynomial (1) is the Lagrange interpolation of function f(x), write down your result in (a) into the following form explicitly:

$$\int_0^1 p(x)dx = \alpha_0 f(x_0) + \alpha_1 f(x_1) + \alpha_2 f(x_2)$$

(c) Let f be a real function on [0, 1] and $\{\alpha_i\}_{i=0}^2$ be the coefficient above. If we approximate the integral

$$\int_0^1 f(x) dx$$

by the formula

$$\int_0^1 f(x)dx \approx \alpha_0 f(x_0) + \alpha_1 f(x_1) + \alpha_2 f(x_2),$$

show that this formula is exact for all polynomials of degree ≤ 2 .

Solution. (a) A direct computation yields

$$p(x) = (\alpha_0 + \alpha_1 + \alpha_2)x^2 - (\frac{4\alpha_0}{3} + \alpha_1 + \frac{\alpha_2}{3})x + \frac{\alpha_0}{3}$$

Since $\int_0^1 x^2 dx = 1/3$ and $\int_0^1 x dx = 1/2$,

$$\int_{0}^{1} p(x)dx = -\frac{\alpha_1}{6} + \frac{\alpha_2}{6}$$

(b) If p(x) is an interpolation of f(x), we have

$$\alpha_1 = -\frac{9}{2}f(x_1)$$
 and $\alpha_2 = \frac{3}{2}f(x_2)$

Then,

$$\int_0^1 p(x)dx = \frac{3f(x_1)}{4} + \frac{f(x_2)}{4}.$$

(c) It is easy to see that this formula is exact for $f_0(x) = 1$, $f_1(x) = x$ and $f_2(x) = x^2$. Given a polynomial p(x) of degree ≤ 2 , there exists α_0 , α_1 and α_2 such that

$$p(x) = \alpha_0 f_0(x) + \alpha_1 f_1(x) + \alpha_2 f_2(x)$$

Therefore,

$$\int_0^1 p(x)dx = \sum_{i=0}^2 \alpha_i \int_0^1 f_i(x)dx = \sum_{i=0}^2 \alpha_i \left(\frac{3f_i(x_0)}{4} + \frac{f_i(x_2)}{4}\right) = \frac{3p(x_1)}{4} + \frac{p(x_2)}{4}.$$

г		

- 3. In the following exercise, we consider the Gauss-Legendre quadrature rule:
 - (a) * Derive the Gauss-Legendre quadrature rule step by step with 3 nodal points in [-1, 1]. (Recall $P_3(x) = \frac{1}{2}(5x^3 3x)$)
 - (b) * Suppose $\max_{x \in [-1,1]} |f^{(6)}(x)| \le 9$, then compute the error estimates when using above Gauss-Legendre quadrature rule to approximate $\int_{-1}^{1} f(x) dx$.
 - (c) Using the composite trapezoidal rule (with 3 nodal points), Simpson's rule, 3 points Gauss-Legendre quadrature rule separately to compute $\int_{-1}^{1} e^x dx$ and compare their accuracy.

Solution. (a) Solving $P_3(x)$, we find $x_0 = -\sqrt{\frac{3}{5}}, x_1 = 0, x_2 = \sqrt{\frac{3}{5}};$ Then using $\alpha_i = \int_{-1}^1 l_i(x) dx = \int_{-1}^1 \prod_{j \neq i, j=0}^2 \frac{x - x_j}{x_i - x_j} dx$, to get $\alpha_0 = \frac{5}{9}, \alpha_1 = \frac{8}{9}, \alpha_2 = \frac{5}{9}.$ Now the rule is $\int_{-1}^1 f(x) dx \approx \frac{5}{9} f(-\sqrt{\frac{3}{5}}) + \frac{8}{9} f(0) + \frac{5}{9} f(\sqrt{\frac{3}{5}}).$

(b)

$$\begin{aligned} |\int_{-1}^{1} f(x)dx - (\frac{5}{9}f(-\sqrt{\frac{3}{5}}) + \frac{8}{9}f(0) + \frac{5}{9}f(\sqrt{\frac{3}{5}}))| &\leq \frac{9}{6!}\int_{-1}^{1}(x + \sqrt{\frac{3}{5}})^{2}x^{2}(x - \sqrt{\frac{3}{5}})^{2}dx \\ &= \frac{1}{80}\int_{-1}^{1}(x^{2} - \frac{3}{5})^{2}x^{2}dx \\ &= \frac{1}{80}\int_{-1}^{1}(x^{6} - \frac{6}{5}x^{4} + \frac{9}{25}x^{2})dx \\ &= \frac{1}{80}[\frac{x^{7}}{7} - \frac{6}{25}x^{5} + \frac{3}{25}x^{3}]_{-1}^{1} \\ &= \frac{1}{2250}\end{aligned}$$

(c) i. Using composite trapezoidal rule:

$$\int_{-1}^{1} e^x dx = \frac{3}{2} \left(\frac{e^{-1}}{2} + e^0 + \frac{e^1}{2}\right) \approx 3.8146$$

ii. Using Simpson's rule:

$$\int_{-1}^{1} e^x dx = \frac{2}{6}(e^{-1} + 4e^0 + e^1) \approx 2.3621$$

iii. Using 3 points Gauss-Legendre rule:

$$\int_{-1}^{1} e^{x} dx = \frac{5}{9} exp(-\sqrt{\frac{3}{5}}) + \frac{8}{9} exp(0) + \frac{5}{9} exp(\sqrt{\frac{3}{5}}) \approx 2.3503$$

While the exact value with 5 digits of accuracy is 2.3504.