MATH3230A Numerical Analysis

Tutorial 9 with solution

1 Recall:

Numerical Integration: We are going to estimate the integral

$$
\int_{a}^{b} f(x) d x
$$

1. Newton-Cotes Quadrature Rule

(a) Idea: For equally spaced set of points x_{i}, to find $\alpha_{0}, \alpha_{1}, \cdots, \alpha_{n}$ such that for any polynomial of degree $\leq n$, we have

$$
\int_{a}^{b} p(x) d x=\alpha_{0} p\left(x_{0}\right)+\alpha_{1} p\left(x_{1}\right)+\cdots+\alpha_{n} p\left(x_{n}\right)
$$

By uniquness of polynomial interpolation, we may pick $\alpha_{i}=\int_{a}^{b} l_{i}(x) d x$ using Lagrange polynomials.
(b) For $n=2$, we have the Simpson's Rule:

$$
\int_{a}^{b} f(x) d x \approx \frac{b-a}{6}\left\{f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right\}
$$

The corresponding error:

$$
\left|\int_{a}^{b} f(x) d x-\frac{b-a}{6}\left\{f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right\}\right| \leq \frac{49}{2880} K(b-a)^{5}
$$

where $\max _{x \in[a, b]}\left|f^{(4)}(x)\right| \leq K$
(c) The Composite Simpson's Rule is

$$
\int_{a}^{b} f(x) d x \approx \frac{h}{6} \sum_{i=1}^{n}\left\{f\left(x_{i-1}\right)+4 f\left(\frac{x_{i-1}+x_{i}}{2}\right)+f\left(x_{i}\right)\right\}
$$

The corresponding error:

$$
\left\lvert\, \int_{a}^{b} f(x)-\frac{h}{6} \sum_{i=1}^{n}\left\{\left.f\left(x_{i-1}+4 f\left(\frac{x_{i-1}+x_{i}}{2}\right)+f\left(x_{i}\right)\right\} \right\rvert\,=\frac{49 K}{2880}(b-a) h^{4}\right.\right.
$$

2. Gaussian Quadrature Rule

(a) The Gaussian Quadrature rule satisfies

$$
\int_{a}^{b} p(x) d x=\sum_{i=0}^{n} \alpha_{i} p\left(x_{i}\right) \text { for all polynomials of degree } \leq 2 n+1
$$

Here we need to determine both points x_{i} and the coefficients α_{i}. In total there are $(2 n+2)$ unknowns. 2 point Gaussian quadrature rule on $[-1,1]$:

$$
\int_{-1}^{1} f(x) d x \approx f\left(\frac{-1}{\sqrt{3}}\right)+f\left(\frac{1}{\sqrt{3}}\right)
$$

(b) Legendre polynomial $P_{n}(x)$ is defined recursively by:

$$
P_{0}(x)=1, \quad P_{1}(x)=x, \quad(n+1) P_{n+1}(x)=(2 n+1) x P_{n}(x)-n P_{n-1}(x)
$$

The procedure of deriving Gauss-Legendre quadrature rule is as:
i. Let $\left\{x_{i}\right\}$ be roots of $P_{n+1}(x)$.
ii. Set $\alpha_{i}=\int_{-1}^{1} l_{i}(x) d x=\int_{-1}^{1} \prod_{j \neq i, j=0}^{n} \frac{x-x_{j}}{x_{i}-x_{j}} d x$.
iii. Then the rule is $\int_{-1}^{1} f(x) d x \approx \sum_{i=0}^{n} \alpha_{i} f\left(x_{i}\right)$

The Gauss-Legendre quadrature rule is exact for polynomial with degree $\leq 2 n+1$.
(c) With Gauss-Legendre quadrature defined above, suppose $f \in C^{2 n+2}[-1,1], \max _{x \in[-1,1]}\left|f^{2 n+2}(x)\right| \leq K$ we have:

$$
\left|\int_{-1}^{1} f(x) d x-\sum_{i=0}^{n} \alpha_{i} f\left(x_{i}\right)\right| \leq \frac{K}{(2 n+2)!} \int_{-1}^{1}\left(x-x_{0}\right)^{2} \cdots\left(x-x_{n}\right)^{2} d x
$$

(d) For $f:[a, b] \rightarrow \mathbb{R}$, we apply the linear transformation: $y=h(x)=\frac{a+b}{2}+\frac{b-a}{2} x$.

2 Exercises:

Please submit solutions of problems with $\operatorname{star}\left(^{*}\right)$ before $6: 30 \mathrm{PM}$ on Wednesday and finish the rest by yourself.

1. * Consider the following questions:
(a) Find $\alpha_{0}, \alpha_{1}, \alpha_{2}$ and α_{3} such that the quadrature formula

$$
\int_{-1}^{1} g(t) d t \approx \alpha_{0} g(-1)+\alpha_{1} g\left(-\frac{1}{3}\right)+\alpha_{2} g\left(\frac{1}{3}\right)+\alpha_{3} g(1)
$$

is exact for all polynomials of degree less than or equal to 3 .
(b) Using the quadrature formula obtained in (a), derive the corresponding quadrature formula for computing

$$
\int_{a}^{b} g(x) d x
$$

(Using the transformation introduced in P127)
Solution. (a) Let $g(t)=1, t, t^{2}, t^{3}$ respectively, then we have

$$
\begin{aligned}
\int_{-1}^{1} 1 d t=2 & =\alpha_{0}+\alpha_{1}+\alpha_{2}+\alpha_{3} \\
\int_{-1}^{1} t d t=0 & =\alpha_{0}(-1)+\alpha_{1}\left(-\frac{1}{3}\right)+\alpha_{2}\left(\frac{1}{3}\right)+\alpha_{3} \\
\int_{-1}^{1} t^{2} d t=\frac{2}{3} & =\alpha_{0}(-1)^{2}+\alpha_{1}\left(-\frac{1}{3}\right)^{2}+\alpha_{2}\left(\frac{1}{3}\right)^{2}+\alpha_{3} \\
\int_{-1}^{1} t^{3} d t=0 & =\alpha_{0}(-1)^{3}+\alpha_{1}\left(-\frac{1}{3}\right)^{3}+\alpha_{2}\left(\frac{1}{3}\right)^{3}+\alpha_{3}
\end{aligned}
$$

Solving the above equations, we have

$$
\alpha_{0}=\frac{1}{4}, \alpha_{1}=\frac{3}{4}, \alpha_{2}=\frac{3}{4} \quad \text { and } \quad \alpha_{3}=\frac{1}{4} .
$$

(b) Let $x=a+\frac{b-a}{2}(t+1)$. We have

$$
\begin{aligned}
\int_{a}^{b} g(x) d x & =\int_{-1}^{1} g\left[a+\frac{b-a}{2}(t+1)\right] \frac{(b-a)}{2} d t \\
& \approx \frac{(b-a)}{2}\left[\frac{1}{4} g(a)+\frac{3}{4}\left(a+\frac{(b-a)}{3}\right)+\frac{3}{4} g\left(a+\frac{2(b-a)}{3}\right)+\frac{1}{4} g(b)\right] \\
& =\frac{b-a}{2}\left[\frac{1}{4} g(a)+\frac{3}{4} g\left(\frac{2 a+b}{3}\right)+\frac{3}{4} g\left(\frac{a+2 b}{3}\right)+\frac{1}{4} g(b)\right]
\end{aligned}
$$

2. * Let $f(x)$ be a real function defined on $[0,1], x_{0}=0, x_{1}=\frac{1}{3}$ and $x_{2}=1$.
(a) Consider the quadratic polynomial $p(x)$:

$$
\begin{equation*}
p(x)=\alpha_{0}\left(x-x_{1}\right)\left(x-x_{2}\right)+\alpha_{1}\left(x-x_{0}\right)\left(x-x_{2}\right)+\alpha_{2}\left(x-x_{0}\right)\left(x-x_{1}\right) \tag{1}
\end{equation*}
$$

Compute the integral

$$
\int_{0}^{1} p(x) d x
$$

and write down the result explicitly in terms of α_{0}, α_{1} and α_{2}.
(b) If the polynomial (1) is the Lagrange interpolation of function $f(x)$, write down your result in (a) into the following form explicitly:

$$
\int_{0}^{1} p(x) d x=\alpha_{0} f\left(x_{0}\right)+\alpha_{1} f\left(x_{1}\right)+\alpha_{2} f\left(x_{2}\right)
$$

(c) Let f be a real function on $[0,1]$ and $\left\{\alpha_{i}\right\}_{i=0}^{2}$ be the coefficient above. If we approximate the integral

$$
\int_{0}^{1} f(x) d x
$$

by the formula

$$
\int_{0}^{1} f(x) d x \approx \alpha_{0} f\left(x_{0}\right)+\alpha_{1} f\left(x_{1}\right)+\alpha_{2} f\left(x_{2}\right)
$$

show that this formula is exact for all polynomials of degree ≤ 2.
Solution. (a) A direct computation yields

$$
p(x)=\left(\alpha_{0}+\alpha_{1}+\alpha_{2}\right) x^{2}-\left(\frac{4 \alpha_{0}}{3}+\alpha_{1}+\frac{\alpha_{2}}{3}\right) x+\frac{\alpha_{0}}{3}
$$

Since $\int_{0}^{1} x^{2} d x=1 / 3$ and $\int_{0}^{1} x d x=1 / 2$,

$$
\int_{0}^{1} p(x) d x=-\frac{\alpha_{1}}{6}+\frac{\alpha_{2}}{6} .
$$

(b) If $p(x)$ is an interpolation of $f(x)$, we have

$$
\alpha_{1}=-\frac{9}{2} f\left(x_{1}\right) \text { and } \alpha_{2}=\frac{3}{2} f\left(x_{2}\right)
$$

Then,

$$
\int_{0}^{1} p(x) d x=\frac{3 f\left(x_{1}\right)}{4}+\frac{f\left(x_{2}\right)}{4}
$$

(c) It is easy to see that this formula is exact for $f_{0}(x)=1, f_{1}(x)=x$ and $f_{2}(x)=x^{2}$. Given a polynomial $p(x)$ of degree ≤ 2, there exists α_{0}, α_{1} and α_{2} such that

$$
p(x)=\alpha_{0} f_{0}(x)+\alpha_{1} f_{1}(x)+\alpha_{2} f_{2}(x)
$$

Therefore,

$$
\int_{0}^{1} p(x) d x=\sum_{i=0}^{2} \alpha_{i} \int_{0}^{1} f_{i}(x) d x=\sum_{i=0}^{2} \alpha_{i}\left(\frac{3 f_{i}\left(x_{0}\right)}{4}+\frac{f_{i}\left(x_{2}\right)}{4}\right)=\frac{3 p\left(x_{1}\right)}{4}+\frac{p\left(x_{2}\right)}{4} .
$$

3. In the following exercise, we consider the Gauss-Legendre quadrature rule:
(a) ${ }^{*}$ Derive the Gauss-Legendre quadrature rule step by step with 3 nodal points in $[-1,1]$. (Recall $P_{3}(x)=$ $\left.\frac{1}{2}\left(5 x^{3}-3 x\right)\right)$
(b) * Suppose $\max _{x \in[-1,1]}\left|f^{(6)}(x)\right| \leq 9$, then compute the error estimates when using above Gauss-Legendre quadrature rule to approximate $\int_{-1}^{1} f(x) d x$.
(c) Using the composite trapezoidal rule (with 3 nodal points), Simpson's rule, 3 points Gauss-Legendre quadrature rule separately to compute $\int_{-1}^{1} e^{x} d x$ and compare their accuracy.

Solution. (a) Solving $P_{3}(x)$, we find $x_{0}=-\sqrt{\frac{3}{5}}, x_{1}=0, x_{2}=\sqrt{\frac{3}{5}}$;
Then using $\alpha_{i}=\int_{-1}^{1} l_{i}(x) d x=\int_{-1}^{1} \prod_{j \neq i, j=0}^{2} \frac{x-x_{j}}{x_{i}-x_{j}} d x$, to get $\alpha_{0}=\frac{5}{9}, \alpha_{1}=\frac{8}{9}, \alpha_{2}=\frac{5}{9}$.
Now the rule is $\int_{-1}^{1} f(x) d x \approx \frac{5}{9} f\left(-\sqrt{\frac{3}{5}}\right)+\frac{8}{9} f(0)+\frac{5}{9} f\left(\sqrt{\frac{3}{5}}\right)$.
(b)

$$
\begin{aligned}
\left|\int_{-1}^{1} f(x) d x-\left(\frac{5}{9} f\left(-\sqrt{\frac{3}{5}}\right)+\frac{8}{9} f(0)+\frac{5}{9} f\left(\sqrt{\frac{3}{5}}\right)\right)\right| & \leq \frac{9}{6!} \int_{-1}^{1}\left(x+\sqrt{\frac{3}{5}}\right)^{2} x^{2}\left(x-\sqrt{\frac{3}{5}}\right)^{2} d x \\
& =\frac{1}{80} \int_{-1}^{1}\left(x^{2}-\frac{3}{5}\right)^{2} x^{2} d x \\
& =\frac{1}{80} \int_{-1}^{1}\left(x^{6}-\frac{6}{5} x^{4}+\frac{9}{25} x^{2}\right) d x \\
& =\frac{1}{80}\left[\frac{x^{7}}{7}-\frac{6}{25} x^{5}+\frac{3}{25} x^{3}\right]_{-1}^{1} \\
& =\frac{1}{2250}
\end{aligned}
$$

(c) i. Using composite trapezoidal rule:

$$
\int_{-1}^{1} e^{x} d x=\frac{3}{2}\left(\frac{e^{-1}}{2}+e^{0}+\frac{e^{1}}{2}\right) \approx 3.8146
$$

ii. Using Simpson's rule:

$$
\int_{-1}^{1} e^{x} d x=\frac{2}{6}\left(e^{-1}+4 e^{0}+e^{1}\right) \approx 2.3621
$$

iii. Using 3 points Gauss-Legendre rule:

$$
\int_{-1}^{1} e^{x} d x=\frac{5}{9} \exp \left(-\sqrt{\frac{3}{5}}\right)+\frac{8}{9} \exp (0)+\frac{5}{9} \exp \left(\sqrt{\frac{3}{5}}\right) \approx 2.3503
$$

While the exact value with 5 digits of accuracy is 2.3504 .

