
MATH3230A Numerical Analysis

Tutorial 7 with solution

1 Recall:
1. Vandermonde interpolation:

Suppose we are given n+ 1 observation data:

f0 = f(x0), f1 = f(x1), . . . , fn+1 = f(xn)

where xi ∕= xj for all i ∕= j. We determine a polynomial p(x) of degree ≤ n such that

p(xi) = fi, i = 0, 1, . . . , n

Suppose p(x) = α0 + α1x+ α2x
2 + . . .αnx

n, we have
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...
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(1)

where the coefficient matrix is called a Vandermonde matrix. Uniqueness of the polynomial p(x) is guaranteed.
But solving for the coefficients αi is computationally expensive and it may be very ill-conditioned (large
condition number).

2. Lagrange interpolation:
Consider the following basis functions:

lj(x) =
(x− x0)(x− x1) · · · (x− xj−1)(x− xj+1) · · · (x− xn)

(xj − x0)(xj − x1) · · · (xj − xj−1)(xj − xj+1) · · · (xj − xn)
(2)

for j = 0, 1, · · · , n. Note that lj(xj) = 1 and lj(xi) = 0 for all i ∕= j. Then the following polynomial of degree
≤ n

L(x) = f0l0(x) + f1l1(x) + · · · fnln(x)

will satisfy L(xi) = fi for all i = 0, 1, · · · , n.

3. Newton form of interpolation:
Suppose a = x0 < x1 < · · · < xn−1 < xn = b. Then we define the Divided difference as follows:
The zeroth-order divided difference of f(x) is

f [x0] = f(x0), f [x1] = f(x1), · · · , f [xn] = f(xn)

The first order divided difference of f(x) is

f [x0, x1] =
f [x1]− f [x0]

x1 − x0
, f [x1, x2] =

f [x2]− f [x1]

x2 − x1
, , · · · ,
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and similar we have the k-th order divided difference of f(x)

f [x0, x1, · · · , xk] =
f [x1, x2, · · · , xk]− f [x0, x1, · · ·xk−1]

xk − x0
, ,

The Newton form of interpolation of f(x) is

p(x) = f [x0] + f [x0, x1](x− x0) + · · ·+ f [x0, x1, · · · , xn](x− x0)(x− x1) · · · (x− xn−1)

4. Error estimates of polynomial interpolations:
Suppose f ∈ Cn+1[a, b] and p(x) is the polynomial interpolation of f(x) at the n+ 1 distinct points:

a = x0 < x1 < · · · < xn−1 < xn = b

then for any x ∈ [a, b], there exists a point ζx ∈ (a, b) such that

f(x)− p(x) =
f (n+1)(ζx)

(n+ 1)!
(x− x0)(x− x1) · · · (x− xn)

2 Exercises:
Please submit solutions of problems with star(*) before 6:30PM on Wednesday and finish the rest by yourself.

1. * Let f be a function defined on [a, b]. Consider the following n+ 1 observation data:

x0 x1 · · · xn

f0 f1 · · · fn

(3)

where x0 = a, xn = b, xi ∕= xj for all i ∕= j and fi = f(xi), i = 0, 1, · · ·n.

(a) Prove the existence and uniqueness of the polynomial interpolation pn(x) for the given data (3).

(b) Write down the basis functions {li(x)}ni=0 of Lagrange interpolation for the given data (3)

(c) Show that the basis functions {li(x)}ni=0 stated in (b) are linearly independent.

(d) Show that
n

i=0

li(x) = 1.

(e) Write down the basis function of Newton’s interpolation for the given data (3).

(f) Given the data (3), we define the divided difference recursively as follows:

f [xi] := f(xi), f [x0, x1, ..., xk] :=
f [x1,...,xk]− f [x0, ..., xk−1]

xk − x0

i. Let i0, i1, ..., in be a rearrangement of the integers 0, 1, ..., n. Show that

f [xi0 , xi1 , ..., xin ] = f [x0,x1, ..., xn].

ii. Assume x ∕= xi, for 0 ≤ i ≤ n,

f [x0, ..., xn, x] =

n

i=0

f [x, xi]

Πn
j=0,j ∕=i(xi − xj)

.

Solution. (a) As xi are distinct point, the lagrange basis functions are well-defined. Therefore, the polynomial
interpolation exists. Let p1 and p2 be two polynomial interpolation, and set q(x) = p1(x)− p2(x). It is
easy to see that q(xi) = 0 for all 0 ≤ i ≤ n. So q is a polynomial with degree ≤ n vanish at n+1 distinct
point and thus q = 0, using the fundamental theorem of algebra.
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(b) Basis function for Lagrange polynomials interpolation:

Πn
j ∕=i

x− xj

xi − xj
i = 1, 2, · · · , n.

(c) Let {αi}ni=0 a coefficients such that
n

i=1

aili(x) = 0.

Taking x = xi in the equation above yields

αi = αili(xi) =

n

i=1

aili(x) = 0,

in view of the identity li(xj) = δij .

(d) For any x1, ..., xn, the data are perfectly interpolated by the zeroth-order polynomial P (x) = f(x) = 1.
Since the interpolation polynomial is unique, we have

1 = P (x) =

n

k=1

Lk(x)

for any x.

(e) Basis function for the Newton’s polynomials interpolation:

1, x− x0, (x− x0)(x− x1), · · ·Πn
i=0(x− xi).

(f) i. Let fc and fd be two polynomials, such that fc interpolates f at x0, x1, ..., xn and fd interpolates f
at xi0 , xi1 , ..., xin :

fc = c0 + c1(x− x0) + ...+ cn(x− x0)(x− x1)...(x− xn−1)

fd = d0 + d1(x− xi0) + ...+ dn(x− xi0)(x− xi1)...(x− xin−1
),

We can rewrite the polynomials above as

fc = cnx
n + ...

fd = dnx
n + ...

Since fc and fd were defined to be in the form of Newton’s polynomials, we know that cn and dn
are nth divided differences, cn = f [x0, x1, ..., xn] and dn = f [xi0 , ..., xin ]. We also know that the
polynomial interpolating the same nodes is unique. Thus the result follows.

ii. Let ωn+1 =
n

i=0(x− xi), we have

n

i=0

li(x) =

n

i=0

ωn+1(x)

(x− xi)ω′
n+1(xi)

⇒ 1

ωn+1(x)
=

n

i=0

1

(x− xi)ω′
n+1(xi)

We also have

f [x0, ..., xn, x] =
f(x)− pn(x)

ωn+1(x)

pn(x) =
n

i=0

ωn+1(x)

(x− xi)ω′
n+1(xi)

f(xi)
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Then we have

f [x0, ..., xn, x] =
f(x)− pn(x)

ωn+1(x)

=
f(x)

ωn+1(x)
− pn(x)

ωn+1(x)

=
f(x)

ωn+1(x)
−

n

i=0

f(xi)

(x− xi)ω′
n+1(xi)

=

n

i=0

f(x)

(x− xi)ω′
n+1(xi)

−
n

i=0

f(xi)

(x− xi)ω′
n+1(xi)

=

n

i=0

f(x)− f(xi)

(x− xi)ω′
n+1(xi)

=

n

i=0

f [x, xi]

ω′
n+1(xi)

2. * Consider the data

x 1 3/2 0

f(x) 3 13/4 3
(4)

(a) What are the Vandermonde interpolation polynomial, Langrange interpolation polynomial and Newton
interpolation for these data?

(b) When we add one point to the data,

x 1 3
2 0 2

f(x) 3 13
4 3 5

3

(5)

What is the Newton interpolation now?
(c) Compute the Newton interpolation of the following data

x 0 1 2 3

f(x) 0 -5/2 -2 27/2
(6)

Evaluate the minimum of f(x) over [0, 3] based on the result above.

Solution. (a)

p(x) = 3− 1

3
x+

1

3
x2

L(x) = −6


x− 3

2


x+

13

2
(x− 1)x+ 2(x− 1)


x− 3

2



N(x) = 3 +
1

2
(x− 1) +

1

3
(x− 1)


x− 3

2



(b)

N(x) = 3 +
1

2
(x− 1) +

1

3
(x− 1)


x− 3

2


− 2x(x− 1)


x− 3

2
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(c)

x0 = 0 x1 = 1 x2 = 2 x3 = 3

-2.5 0.5 15.5

1.5 7.5

2

Therefore

p(x) = −2.5x+ 1.5x(x− 1) + 2x(x− 1)(x− 2)

= 2x3 − 4.5x2

And
p′(x) = 6x2 − 9x

whose solutions are x = 0 and x = 1.5. Comparing the three values p(0) = 0, p(1.5) = − 27
8 and p(3) = 27

2 ,
we know that the approximate minimum value of f(x) is − 27

8 .

3. *

(a) Write three drawbacks for using Vandermonde interpolation.

(b) Consider the matrix

A =





1 x0 x2
0 · · · xn

0

1 x1 x2
1 · · · xn

1

...
...

...
...

...

1 xn x2
n · · · xn

n





In this question, we try to prove the Vandermonde formula :

det(A) =


i>j

(xi − xj)

i. Show that it is true when n = 1.
ii. Conisder

f(t) = detA =





1 x0 x2
0 · · · xn

0

1 x1 x2
1 · · · xn

1

...
...

...
...

...

1 xn−1 x2
n−1 · · · xn

n−1

1 t t2 · · · tn





Show that
f(t) = k(t− x0) · · · (t− xn−1)

for some k and hence prove the Vandermonde formula.

Solution. (a) Finding inverse of matrix requires lots of calculation.
The matrix is ill-posed
Adding new data has to solve the linear system from the beginning.

5



(b) i. If n = 1, A =




1 x0

1 x1



, then det(A) = X1 −X0. So n = 1 is true.

ii. Consider

f(t) = detA =





1 x0 x2
0 · · · xn

0

1 x1 x2
1 · · · xn

1

...
...

...
...

...

1 xn−1 x2
n−1 · · · xn

n−1

1 t t2 · · · tn





Note that we can represent f(t) as

f(t) = ±D0 ∓D1t± · · ·+Dnt
n

where Di are determinants of n×n matrices that contain no factor of t. Since Dn is the Vandermonde
determinant of the n × n matrix with coefficients x0 through xn−1, we have f(t) an nth degree
polynomial with leading coefficients

k =


n>i>j

(xi − xj)

Moreover, if t = x0, then f(t) = f(x0) = 0 and similar results can be obtained if t = xi, i =
1, 2, ..., n− 1. That is

f(x0) = f(x1) = ... = f(xn−1)

Since the n values xi, for 0 ≤ i ≤ n are all distinct, and f(t) is an nth degree polynomial, we have

f(t) = k(t− x0) · · · (t− xn−1)

If we put t = xn, we will have the Vandermonde formula. By the principle of M.I., we have proved
the Vandermonde formula.

4. Let x0, x1, ..., xn be distinct points and lj(x) be the Lagrange basis functions, prove the follow equality

n

j=0

(xj − x)klj(x) ≡ 0, k = 1, 2, ..., n

Solution. Note that for any polynomial pn(x) of degree ≤ n, we have the

n

i=0

pn(xi)li(x) = pn(x)

Note that (xj − x)k can also be written as a combination of pn(x). The result follows.
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