MATH3230A Numerical Analysis

Tutorial 7 with solution

1 Recall:

1. Vandermonde interpolation:

Suppose we are given $n+1$ observation data:

$$
f_{0}=f\left(x_{0}\right), f_{1}=f\left(x_{1}\right), \ldots, f_{n+1}=f\left(x_{n}\right)
$$

where $x_{i} \neq x_{j}$ for all $i \neq j$. We determine a polynomial $p(x)$ of degree $\leq n$ such that

$$
p\left(x_{i}\right)=f_{i}, \quad i=0,1, \ldots, n
$$

Suppose $p(x)=\alpha_{0}+\alpha_{1} x+\alpha_{2} x^{2}+\ldots \alpha_{n} x^{n}$, we have

$$
\left(\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \cdots & x_{0}^{n} \tag{1}\\
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n} \\
\vdots & \vdots & \cdots & \vdots & \vdots \\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n}
\end{array}\right)\left(\begin{array}{c}
\alpha_{0} \\
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right)=\left(\begin{array}{c}
f_{0} \\
f_{1} \\
\vdots \\
f_{n}
\end{array}\right)
$$

where the coefficient matrix is called a Vandermonde matrix. Uniqueness of the polynomial $p(x)$ is guaranteed. But solving for the coefficients α_{i} is computationally expensive and it may be very ill-conditioned (large condition number).
2. Lagrange interpolation:

Consider the following basis functions:

$$
\begin{equation*}
l_{j}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{j-1}\right)\left(x-x_{j+1}\right) \cdots\left(x-x_{n}\right)}{\left(x_{j}-x_{0}\right)\left(x_{j}-x_{1}\right) \cdots\left(x_{j}-x_{j-1}\right)\left(x_{j}-x_{j+1}\right) \cdots\left(x_{j}-x_{n}\right)} \tag{2}
\end{equation*}
$$

for $j=0,1, \cdots, n$. Note that $l_{j}\left(x_{j}\right)=1$ and $l_{j}\left(x_{i}\right)=0$ for all $i \neq j$. Then the following polynomial of degree $\leq n$

$$
L(x)=f_{0} l_{0}(x)+f_{1} l_{1}(x)+\cdots f_{n} l_{n}(x)
$$

will satisfy $L\left(x_{i}\right)=f_{i}$ for all $i=0,1, \cdots, n$.

3. Newton form of interpolation:

Suppose $a=x_{0}<x_{1}<\cdots<x_{n-1}<x_{n}=b$. Then we define the Divided difference as follows:
The zeroth-order divided difference of $f(x)$ is

$$
f\left[x_{0}\right]=f\left(x_{0}\right), \quad f\left[x_{1}\right]=f\left(x_{1}\right), \cdots, f\left[x_{n}\right]=f\left(x_{n}\right)
$$

The first order divided difference of $f(x)$ is

$$
f\left[x_{0}, x_{1}\right]=\frac{f\left[x_{1}\right]-f\left[x_{0}\right]}{x_{1}-x_{0}}, \quad f\left[x_{1}, x_{2}\right]=\frac{f\left[x_{2}\right]-f\left[x_{1}\right]}{x_{2}-x_{1}}, \quad, \cdots
$$

and similar we have the k-th order divided difference of $f(x)$

$$
f\left[x_{0}, x_{1}, \cdots, x_{k}\right]=\frac{f\left[x_{1}, x_{2}, \cdots, x_{k}\right]-f\left[x_{0}, x_{1}, \cdots x_{k-1}\right]}{x_{k}-x_{0}}
$$

The Newton form of interpolation of $f(x)$ is

$$
p(x)=f\left[x_{0}\right]+f\left[x_{0}, x_{1}\right]\left(x-x_{0}\right)+\cdots+f\left[x_{0}, x_{1}, \cdots, x_{n}\right]\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n-1}\right)
$$

4. Error estimates of polynomial interpolations:

Suppose $f \in C^{n+1}[a, b]$ and $p(x)$ is the polynomial interpolation of $f(x)$ at the $n+1$ distinct points:

$$
a=x_{0}<x_{1}<\cdots<x_{n-1}<x_{n}=b
$$

then for any $x \in[a, b]$, there exists a point $\zeta_{x} \in(a, b)$ such that

$$
f(x)-p(x)=\frac{f^{(n+1)}\left(\zeta_{x}\right)}{(n+1)!}\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)
$$

2 Exercises:

Please submit solutions of problems with $\operatorname{star}\left(^{*}\right)$ before $6: 30 \mathrm{PM}$ on Wednesday and finish the rest by yourself.

1. * Let f be a function defined on $[a, b]$. Consider the following $n+1$ observation data:

x_{0}	x_{1}	\cdots	x_{n}
f_{0}	f_{1}	\cdots	f_{n}

where $x_{0}=a, x_{n}=b, x_{i} \neq x_{j}$ for all $i \neq j$ and $f_{i}=f\left(x_{i}\right), i=0,1, \cdots n$.
(a) Prove the existence and uniqueness of the polynomial interpolation $p_{n}(x)$ for the given data (3).
(b) Write down the basis functions $\left\{l_{i}(x)\right\}_{i=0}^{n}$ of Lagrange interpolation for the given data (3)
(c) Show that the basis functions $\left\{l_{i}(x)\right\}_{i=0}^{n}$ stated in (b) are linearly independent.
(d) Show that

$$
\sum_{i=0}^{n} l_{i}(x)=1
$$

(e) Write down the basis function of Newton's interpolation for the given data (3).
(f) Given the data (3), we define the divided difference recursively as follows:

$$
f\left[x_{i}\right]:=f\left(x_{i}\right), \quad f\left[x_{0}, x_{1}, \ldots, x_{k}\right]:=\frac{f\left[x_{1, \ldots}, x_{k}\right]-f\left[x_{0}, \ldots, x_{k-1}\right]}{x_{k}-x_{0}}
$$

i. Let $i_{0}, i_{1}, \ldots, i_{n}$ be a rearrangement of the integers $0,1, \ldots, n$. Show that

$$
f\left[x_{i_{0}}, x_{i_{1}}, \ldots, x_{i_{n}}\right]=f\left[x_{0}, x_{1}, \ldots, x_{n}\right] .
$$

ii. Assume $x \neq x_{i}$, for $0 \leq i \leq n$,

$$
f\left[x_{0}, \ldots, x_{n}, x\right]=\sum_{i=0}^{n} \frac{f\left[x, x_{i}\right]}{\Pi_{j=0, j \neq i}^{n}\left(x_{i}-x_{j}\right)}
$$

Solution. (a) As x_{i} are distinct point, the lagrange basis functions are well-defined. Therefore, the polynomial interpolation exists. Let p_{1} and p_{2} be two polynomial interpolation, and set $q(x)=p_{1}(x)-p_{2}(x)$. It is easy to see that $q\left(x_{i}\right)=0$ for all $0 \leq i \leq n$. So q is a polynomial with degree $\leq n$ vanish at $n+1$ distinct point and thus $q=0$, using the fundamental theorem of algebra.
(b) Basis function for Lagrange polynomials interpolation:

$$
\Pi_{j \neq i}^{n} \frac{x-x_{j}}{x_{i}-x_{j}} \quad i=1,2, \cdots, n
$$

(c) Let $\left\{\alpha_{i}\right\}_{i=0}^{n}$ a coefficients such that

$$
\sum_{i=1}^{n} a_{i} l_{i}(x)=0
$$

Taking $x=x_{i}$ in the equation above yields

$$
\alpha_{i}=\alpha_{i} l_{i}\left(x_{i}\right)=\sum_{i=1}^{n} a_{i} l_{i}(x)=0
$$

in view of the identity $l_{i}\left(x_{j}\right)=\delta_{i j}$.
(d) For any x_{1}, \ldots, x_{n}, the data are perfectly interpolated by the zeroth-order polynomial $P(x)=f(x)=1$.

Since the interpolation polynomial is unique, we have

$$
1=P(x)=\sum_{k=1}^{n} L_{k}(x)
$$

for any x.
(e) Basis function for the Newton's polynomials interpolation:

$$
1, x-x_{0},\left(x-x_{0}\right)\left(x-x_{1}\right), \cdots \Pi_{i=0}^{n}\left(x-x_{i}\right)
$$

(f) i. Let f_{c} and f_{d} be two polynomials, such that f_{c} interpolates f at $x_{0}, x_{1}, \ldots, x_{n}$ and f_{d} interpolates f at $x_{i_{0}}, x_{i_{1}}, \ldots, x_{i_{n}}$:

$$
\begin{aligned}
& f_{c}=c_{0}+c_{1}\left(x-x_{0}\right)+\ldots+c_{n}\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n-1}\right) \\
& f_{d}=d_{0}+d_{1}\left(x-x_{i_{0}}\right)+\ldots+d_{n}\left(x-x_{i_{0}}\right)\left(x-x_{i_{1}}\right) \ldots\left(x-x_{i_{n-1}}\right)
\end{aligned}
$$

We can rewrite the polynomials above as

$$
\begin{aligned}
f_{c} & =c_{n} x^{n}+\ldots \\
f_{d} & =d_{n} x^{n}+\ldots
\end{aligned}
$$

Since f_{c} and f_{d} were defined to be in the form of Newton's polynomials, we know that c_{n} and d_{n} are nth divided differences, $c_{n}=f\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ and $d_{n}=f\left[x_{i_{0}}, \ldots, x_{i_{n}}\right]$. We also know that the polynomial interpolating the same nodes is unique. Thus the result follows.
ii. Let $\omega_{n+1}=\prod_{i=0}^{n}\left(x-x_{i}\right)$, we have

$$
\begin{aligned}
\sum_{i=0}^{n} l_{i}(x) & =\sum_{i=0}^{n} \frac{\omega_{n+1}(x)}{\left(x-x_{i}\right) \omega_{n+1}^{\prime}\left(x_{i}\right)} \\
\Rightarrow \frac{1}{\omega_{n+1}(x)} & =\sum_{i=0}^{n} \frac{1}{\left(x-x_{i}\right) \omega_{n+1}^{\prime}\left(x_{i}\right)}
\end{aligned}
$$

We also have

$$
\left.\begin{array}{rl}
f\left[x_{0}, \ldots, x_{n}, x\right] & =\frac{f(x)-p_{n}(x)}{\omega_{n+1}(x)} \\
p_{n}(x) & =\sum_{i=0}^{n}
\end{array} \frac{\omega_{n+1}(x)}{\left(x-x_{i}\right) \omega_{n+1}^{\prime}\left(x_{i}\right)} f\left(x_{i}\right)\right) ~ \$
$$

Then we have

$$
\begin{aligned}
f\left[x_{0}, \ldots, x_{n}, x\right] & =\frac{f(x)-p_{n}(x)}{\omega_{n+1}(x)} \\
& =\frac{f(x)}{\omega_{n+1}(x)}-\frac{p_{n}(x)}{\omega_{n+1}(x)} \\
& =\frac{f(x)}{\omega_{n+1}(x)}-\sum_{i=0}^{n} \frac{f\left(x_{i}\right)}{\left(x-x_{i}\right) \omega_{n+1}^{\prime}\left(x_{i}\right)} \\
& =\sum_{i=0}^{n} \frac{f(x)}{\left(x-x_{i}\right) \omega_{n+1}^{\prime}\left(x_{i}\right)}-\sum_{i=0}^{n} \frac{f\left(x_{i}\right)}{\left(x-x_{i}\right) \omega_{n+1}^{\prime}\left(x_{i}\right)} \\
& =\sum_{i=0}^{n} \frac{f(x)-f\left(x_{i}\right)}{\left(x-x_{i}\right) \omega_{n+1}^{\prime}\left(x_{i}\right)} \\
& =\sum_{i=0}^{n} \frac{f\left[x, x_{i}\right]}{\omega_{n+1}^{\prime}\left(x_{i}\right)}
\end{aligned}
$$

2. * Consider the data

x	1	$3 / 2$	0
$f(x)$	3	$13 / 4$	3

(a) What are the Vandermonde interpolation polynomial, Langrange interpolation polynomial and Newton interpolation for these data?
(b) When we add one point to the data,

x	1	$\frac{3}{2}$	0	2
$f(x)$	3	$\frac{13}{4}$	3	$\frac{5}{3}$

What is the Newton interpolation now?
(c) Compute the Newton interpolation of the following data

x	0	1	2	3
$f(x)$	0	$-5 / 2$	-2	$27 / 2$

Evaluate the minimum of $f(x)$ over $[0,3]$ based on the result above.
Solution. (a)

$$
\begin{gathered}
p(x)=3-\frac{1}{3} x+\frac{1}{3} x^{2} \\
L(x)=-6\left(x-\frac{3}{2}\right) x+\frac{13}{2}(x-1) x+2(x-1)\left(x-\frac{3}{2}\right) \\
N(x)=3+\frac{1}{2}(x-1)+\frac{1}{3}(x-1)\left(x-\frac{3}{2}\right)
\end{gathered}
$$

(b)

$$
N(x)=3+\frac{1}{2}(x-1)+\frac{1}{3}(x-1)\left(x-\frac{3}{2}\right)-2 x(x-1)\left(x-\frac{3}{2}\right)
$$

$$
\begin{array}{cccc}
x_{0}=0 & x_{1}=1 & x_{2}=2 & x_{3}=3
\end{array}
$$

(c)

$$
-2.5
$$

0.5
15.5

1.5 7.5

2

$$
\begin{aligned}
p(x) & =-2.5 x+1.5 x(x-1)+2 x(x-1)(x-2) \\
& =2 x^{3}-4.5 x^{2}
\end{aligned}
$$

And

$$
p^{\prime}(x)=6 x^{2}-9 x
$$

whose solutions are $x=0$ and $x=1.5$. Comparing the three values $p(0)=0, p(1.5)=-\frac{27}{8}$ and $p(3)=\frac{27}{2}$, we know that the approximate minimum value of $f(x)$ is $-\frac{27}{8}$.
3. *
(a) Write three drawbacks for using Vandermonde interpolation.
(b) Consider the matrix

$$
A=\left(\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \cdots & x_{0}^{n} \\
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n}
\end{array}\right)
$$

In this question, we try to prove the Vandermonde formula:

$$
\operatorname{det}(A)=\prod_{i>j}\left(x_{i}-x_{j}\right)
$$

i. Show that it is true when $n=1$.
ii. Conisder

$$
f(t)=\operatorname{det} A=\left(\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \cdots & x_{0}^{n} \\
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & x_{n-1} & x_{n-1}^{2} & \cdots & x_{n-1}^{n} \\
1 & t & t^{2} & \cdots & t^{n}
\end{array}\right)
$$

Show that

$$
f(t)=k\left(t-x_{0}\right) \cdots\left(t-x_{n-1}\right)
$$

for some k and hence prove the Vandermonde formula.
Solution. (a) Finding inverse of matrix requires lots of calculation.
The matrix is ill-posed
Adding new data has to solve the linear system from the beginning.
(b) i. If $n=1, A=\left(\begin{array}{cc}1 & x_{0} \\ 1 & x_{1}\end{array}\right)$, then $\operatorname{det}(A)=X_{1}-X_{0}$. So $n=1$ is true.
ii. Consider

$$
f(t)=\operatorname{det} A=\left(\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \cdots & x_{0}^{n} \\
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & x_{n-1} & x_{n-1}^{2} & \cdots & x_{n-1}^{n} \\
1 & t & t^{2} & \cdots & t^{n}
\end{array}\right)
$$

Note that we can represent $f(t)$ as

$$
f(t)= \pm D_{0} \mp D_{1} t \pm \cdots+D_{n} t^{n}
$$

where D_{i} are determinants of $n \times n$ matrices that contain no factor of t. Since D_{n} is the Vandermonde determinant of the $n \times n$ matrix with coefficients x_{0} through x_{n-1}, we have $f(t)$ an $n^{\text {th }}$ degree polynomial with leading coefficients

$$
k=\prod_{n>i>j}\left(x_{i}-x_{j}\right)
$$

Moreover, if $t=x_{0}$, then $f(t)=f\left(x_{0}\right)=0$ and similar results can be obtained if $t=x_{i}, \quad i=$ $1,2, \ldots, n-1$. That is

$$
f\left(x_{0}\right)=f\left(x_{1}\right)=\ldots=f\left(x_{n-1}\right)
$$

Since the n values x_{i}, for $0 \leq i \leq n$ are all distinct, and $f(t)$ is an $n^{t h}$ degree polynomial, we have

$$
f(t)=k\left(t-x_{0}\right) \cdots\left(t-x_{n-1}\right)
$$

If we put $t=x_{n}$, we will have the Vandermonde formula. By the principle of M.I., we have proved the Vandermonde formula.
4. Let $x_{0}, x_{1}, \ldots, x_{n}$ be distinct points and $l_{j}(x)$ be the Lagrange basis functions, prove the follow equality

$$
\sum_{j=0}^{n}\left(x_{j}-x\right)^{k} l_{j}(x) \equiv 0, \quad k=1,2, \ldots, n
$$

Solution. Note that for any polynomial $p_{n}(x)$ of degree $\leq n$, we have the

$$
\sum_{i=0}^{n} p_{n}\left(x_{i}\right) l_{i}(x)=p_{n}(x)
$$

Note that $\left(x_{j}-x\right)^{k}$ can also be written as a combination of $p_{n}(x)$. The result follows.

