MATH3230A Numerical Analysis

Tutorial 6 with solution

1 Recall:

1. Broyden's Method:

- (a) Scant Condition: $A_k(x_k x_{k-1}) = F(x_k) F(x_{k-1})$.
 - Rank one update of $A : B = A + \mathbf{u}\mathbf{v}^T$.
 - Sherman-Morrison formula: $B^{-1} = A^{-1} \frac{[A^{-1}(\mathbf{u} \otimes \mathbf{v})A^{-1}]}{\mathbf{v} \cdot A^{-1}\mathbf{u}}$

(b) With extra condition on mimicking behavior of the true Jacobian along the line joining x_{k-1} and x_k, the following 'bad' Broyden's method is derived: Select x₀ and A₀. For k = 0, 1, 2, ..., do the following

- Compute \mathbf{d}_k using $\mathbf{d}_k = -A_k^{-1}F(\mathbf{x}_k)$
- Update \mathbf{x}_{k+1} by $\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{d}_k$
- Update $\mathbf{u}_k = A_k^{-1} F(\mathbf{x}_{k+1}), c_k = \mathbf{d}_k^T \mathbf{d}_k + \mathbf{d}_k \cdot \mathbf{u}_k.$
- Update $A_{k+1}^{-1} = A_k^{-1} \frac{1}{c_k} (\mathbf{u}_k \otimes \mathbf{u}_k)$

One order of computaional expense is saved compared with Newton's Method.

(c) Convergence of Broyden's method:

For the 'good' Broyden's method, if

- i. $F(\mathbf{x})$ is differentiable, Jacobian $DF(\mathbf{x})$ is Lipschitz continuous with constant γ on a convex open set $D \subset \mathbb{R}^n$.
- ii. \mathbf{x}^* satisfies $F(\mathbf{x}^*) = 0$ and $DF(\mathbf{x}^*)$ is invertible.
- iii. $||\mathbf{x}_0 \mathbf{x}^*|| < \epsilon$ and $||A_0 DF(\mathbf{x}^*)| < \delta$ for some constants ϵ, δ .

Then $||\mathbf{x}_{k+1} - \mathbf{x}^*|| \le \frac{1}{2} ||\mathbf{x}_k - \mathbf{x}^*||$

2. Steepest Descent Method:

- To solve the equation $F(\mathbf{x}) = 0$, we first let $g(\mathbf{x}) = F(\mathbf{x})^T F(\mathbf{x})/2$. Select \mathbf{x}_0 . For $k = 0, 1, 2, \cdots$, do the following
 - Find α_k that solves the one-dimensional minimization

$$\min_{\alpha \ge 0} g(x_k - \alpha \nabla g(\mathbf{x}_k))$$

- Update \mathbf{x}_{k+1} by

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \nabla g(\mathbf{x}_k)$$

- For a linear problem, select \mathbf{x}_0 . For $k = 0, 1, 2, \cdots$, do the following
 - compute

$$\mathbf{d}_k = \mathbf{b} - A\mathbf{x}_k, \qquad \alpha_k = \frac{\mathbf{d}_k \cdot \mathbf{d}_k}{\mathbf{d}_k \cdot A\mathbf{d}_k}$$

– Update \mathbf{x}_{k+1} by

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \mathbf{d}_k$$

2 Exercises:

Please submit solutions of problems with star(*) before 6:30PM on Wednesday and finish the rest by yourself.

1. * Consider the following equation

$$\mathbf{F}(\mathbf{x}) = 0 \tag{1}$$

where $\mathbf{F}: \mathbb{R}^n \to \mathbb{R}^n$ is a non-linear function.

(a) Point out the derivation of the following relationship:

$$A_{k} = A_{k-1} + \frac{(F(\mathbf{x}_{k}) - F(\mathbf{x}_{k-1}) - A_{k-1}\mathbf{d}_{k-1}) \otimes \mathbf{d}_{k-1}}{\mathbf{d}_{k-1}^{T}\mathbf{d}_{k-1}}, \quad \text{where} \quad \mathbf{d}_{k-1} = \mathbf{x}_{k} - \mathbf{x}_{k-1}$$
(2)

then write down the Broyden's method using (2) without involving A_k^{-1} in your computation. This is also called 'good' Broyden's method.

(b) Consider the following system of equations

$$\mathbf{F}(\mathbf{x}) = \mathbf{F}(x, y) = \begin{pmatrix} x - y - 1 \\ x^2 + xy - 6 \end{pmatrix} \in \mathbb{R}^2.$$
(3)

Compute the first two iterations using 'good/bad' Broyden's method to solve (3) with initial value $\mathbf{x}_0 = (2, 2)$.

- Solution. (a) i. Since we require $A_k d_{k-1} = F(x_k) F(x_{k-1})$ and $A_k y = A_{k-1} y$ for all $y \cdot d_{k-1} = 0$. So in (5.8), take $D = A_k$, $C = A_{k-1}$, $g = w = d_{k-1}$, $z = F(x_k) F(x_{k-1})$), then we get (2).
 - ii. Select \mathbf{x}_0 and A_0 . For $k = 0, 1, 2, \cdots$, do the following
 - Compute \mathbf{d}_k by solving $A_k \mathbf{d}_k = -F(\mathbf{x}_k)$
 - Update \mathbf{x}_{k+1} by $\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{d}_k$
 - Update A_{k+1} using $A_{k+1} = A_k + \frac{(F(\mathbf{x}_{k+1}) F(\mathbf{x}_k) A_k \mathbf{d}_k) \otimes \mathbf{d}_k^T}{\mathbf{d}_k^T \mathbf{d}_k}$
- (b) Using good Broyden's method, a direct computation yields

$$F(x_0, y_0) = F(2, 2) = \begin{pmatrix} -1 \\ 2 \end{pmatrix};$$
$$DF(x, y) = \begin{pmatrix} 1 & -1 \\ 2x + y & x \end{pmatrix};$$

and so

$$DF(x_0, y_0) = DF(2, 2) = \begin{pmatrix} 1 & -1 \\ 6 & 2 \end{pmatrix}.$$

Let $A_0 = DF(2,2)$, we have

$$d_1 = -A_0^{-1}F(x_0) = \frac{1}{8} \begin{pmatrix} 2 & 1 \\ -6 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}.$$

We then update x_1 by $x_1 = x_0 + d_1 = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} + d_1 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$ Now we update A_1 by $A_1 = A_0 + \frac{(F(x_1, y_1) - F(x_0, y_0) - A_0 d_1) \otimes d_1}{d_1^T d_1}$:

$$A_{1} = \begin{pmatrix} 1 & -1 \\ 6 & 2 \end{pmatrix} + \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} - \begin{pmatrix} -1 \\ 2 \end{pmatrix} - \begin{pmatrix} 1 & -1 \\ 6 & 2 \end{pmatrix} \begin{pmatrix} 0 \\ -1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 0 \\ -1 \end{pmatrix}^{T} / 1$$

That is,

$$A_1 = \left(\begin{array}{rrr} 1 & -1 \\ 6 & 2 \end{array}\right)$$

Similarly, we have
$$d_2 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
, $x_2 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$.

2. * Consider the following equation

$$\mathbf{F}(\mathbf{x}) = 0 \tag{4}$$

where $\mathbf{F}: \mathbb{R}^n \to \mathbb{R}^n$ is a non-linear function. Instead of solving (4), we minimize the following function:

$$g(\mathbf{x}) = \frac{1}{2} \mathbf{F}(\mathbf{x})^T \mathbf{F}(\mathbf{x})$$
(5)

(a) Show that $\nabla g(\mathbf{x}) = D\mathbf{F}(x)^T \mathbf{F}(\mathbf{x})$ by direct calculation.

- (b) State the Steepest Descent Method to minimize the function (5).
- (c) Consider the special case of $\mathbf{F}: \mathbb{R}^2 \to \mathbb{R}^2$, apply the Steepest Descent Method algorithm to solve:

$$\mathbf{F}(x,y) = \left(\begin{array}{c} 2x+y\\ x-y+1 \end{array}\right) = \mathbf{0}.$$

Give all the detailed computing steps for the first iteration with initial guess $(x_0, y_0)^T = (1, 0)$.

/

Solution.

(a) Denote

$$F(\mathbf{x}) = (f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_n(\mathbf{x})), \text{ and } \mathbf{x} = (x_1, x_2, \dots, x_n)$$

By definition, we have

$$\nabla g(\mathbf{x}) = \frac{1}{2} \begin{pmatrix} \frac{\partial}{\partial x_1} \left(\sum_{i=1}^n f_i(\mathbf{x}) f_i(\mathbf{x}) \right) \\ \frac{\partial}{\partial x_2} \left(\sum_{i=1}^n f_i(\mathbf{x}) f_i(\mathbf{x}) \right) \\ \vdots \\ \frac{\partial}{\partial x_n} \left(\sum_{i=1}^n f_i(\mathbf{x}) f_i(\mathbf{x}) \right) \end{pmatrix}$$

W.L.O.G, we consider

$$\frac{\partial}{\partial x_1} \left(\sum_{i=1}^n f_i(\mathbf{x}) f_i(\mathbf{x}) \right)$$

$$= \sum_{i=1}^n \frac{\partial}{\partial x_1} \left(f_i(\mathbf{x}) f_i(\mathbf{x}) \right)$$

$$= \sum_{i=1}^n \frac{\partial f_i(\mathbf{x})}{\partial x_1} f_i(\mathbf{x}) + \sum_{i=1}^n f_i(\mathbf{x}) \frac{\partial f_i(\mathbf{x})}{\partial x_1}$$

$$= 2 \left(\frac{\partial F(\mathbf{x})}{\partial x_1} \right)^T \cdot F(\mathbf{x}).$$

Therefore, we have

$$\nabla g(\mathbf{x}) = \begin{pmatrix} \left(\frac{\partial F(\mathbf{x})}{\partial x_1}\right)^T \cdot F(\mathbf{x}) \\ \left(\frac{\partial F(\mathbf{x})}{\partial x_2}\right)^T \cdot F(\mathbf{x}) \\ \vdots \\ \left(\frac{\partial F(\mathbf{x})}{\partial x_n}\right)^T \cdot F(\mathbf{x}) \end{pmatrix} = DF(\mathbf{x})^T F(\mathbf{x}).$$

(b) To solve $F(\mathbf{x}) = 0$, let $g(\mathbf{x}) = \frac{1}{2}F(\mathbf{x})^T F(\mathbf{x})$ and select $\mathbf{x_0}$. For k = 0, 1, 2, ..., do the following: i. Find α_k that solve the one-dimensional minimization

$$\min_{\alpha \ge 0} g\left(\mathbf{x}_{\mathbf{k}} - \alpha \nabla g(\mathbf{x}_{\mathbf{k}})\right)$$
(6)

ii. Update $\mathbf{x_{k+1}}$ by

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \nabla g(\mathbf{x}_k) \tag{7}$$

(c) Since
$$F(x,y) = \begin{pmatrix} 2x+y\\ x-y+1 \end{pmatrix}$$
, we have
 $g(x,y) = ((2x+y)^2 + (x-y+1)^2)/2$

and

$$DF(x,y) = \begin{pmatrix} 2 & 1 \\ & \\ 1 & -1 \end{pmatrix}$$

as $\nabla g(x,y) = DF(x,y)^T F(x,y)$, we get

$$\nabla g(x,y) = [DF(x,y)]^T F(x,y) = \begin{pmatrix} 5x+y+1\\ x+2y-1 \end{pmatrix}$$

Therefore $\nabla g(x_0, y_0) = \begin{pmatrix} 6 \\ 0 \end{pmatrix}$

Now we need to solve (6) with $(x_0, y_0)^T = (1, 0)$. We have

$$g((x_0, y_0) - \alpha \nabla (g(x_0, y_0)))$$

= $g(1 - 6\alpha, 0)$
= $\frac{1}{2}(4(1 - 6\alpha)^2 + (2 - 6\alpha)^2)$
= $\frac{1}{2}(5(6\alpha)^2 - 12(6\alpha) + 8)$

Therefore $g((x_0, y_0) - \alpha \nabla(g(x_0, y_0)))$ attends its minimum $(\alpha > 0)$ when

$$6\alpha = \frac{6}{5}.$$

that is $\alpha = \frac{1}{5}$ Now, by (7), we obtain

$$(x_1, y_1)^T = (x_0, y_0)^T - \alpha \nabla g(x_0, y_0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} - \frac{1}{5} \begin{pmatrix} 6 \\ 0 \end{pmatrix}$$
$$= \begin{pmatrix} -0.2 \\ 0 \end{pmatrix}$$

- 3. Consider a linear problem of finding solution \mathbf{x} to $A\mathbf{x} = \mathbf{b}$, where A is symmetric and positive definite. Defining the minimizing function $g(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T A\mathbf{x} - \mathbf{b}^T x$
 - (a) * Suppose \mathbf{x}^* solves $A\mathbf{x}^* = \mathbf{b}$, showing that \mathbf{x}^* minimizes $g(\mathbf{x})$.
 - (b) * Show that the function $g(\mathbf{x})$ is a convex function. A function g is called convex if, for any two points \mathbf{x}_1 and \mathbf{x}_2 in \mathbb{R}^n , and $t \in [0, 1]$, we have

$$g(t\mathbf{x}_1 + (1-t)\mathbf{x}_2) \le tg(\mathbf{x}_1) + (1-t)g(\mathbf{x}_2)$$

(c) Show that the descent direction in the k - th step is perpendicular to the (k + 1) - th step. Try to draw a simple diagram to explain the geometric meaning of this phenomenon.

Solution. (a) Note for any point $z = y + x^*$, we have:

$$g(z) = (y + x^*)^T A(y + x^*)/2 - b^T (y + x^*)$$

= $x^{*T} A x^*/2 - b^T x^* + x^{*T} A y/2 + y^T A x^*/2 + y^T A y/2 - b^T y$
= $g(x^*) + y^T A y/2 + y^T A x^* - b^T y$
= $g(x^*) + y^T A y/2$
 $\geq g(x^*)$

The last inequality uses A is symmetric positive definite.

(b)

$$\begin{aligned} tg(x_1) + (1-t)g(x_2) &= tx_1^T Ax_1/2 + (1-t)x_2^T Ax_2/2 - tx_1^T b - (1-t)x_2^T b \\ g(tx_1 + (1-t)x_2) &= t^2 x_1^T Ax_1/2 + (1-t)^2 x_2^T Ax_2/2 + t(1-t)x_1^T Ax_2 - tx_1^T b - (1-t)x_2^T b \end{aligned}$$

Note

$$0 < (x_1^T - x_2^T)A(x_1 - x_2) = x_1^T A x_1 + x_2^T A x_2 - 2x_1^T A x_2$$
(8)

We have

$$g(tx_1 + (1-t)x_2) \leq t^2 x_1^T A x_1/2 + (1-t)^2 x_2^T A x_2/2 + t(1-t)(x_1^T A x_1 + x_2^T A x_2)/2 - tx_1^T b - (1-t)x_2^T b$$

$$\leq tx_1^T A x_1/2 + (1-t)x_2^T A x_2/2 - tx_1^T b - (1-t)x_2^T b$$

$$\leq tg(x_1) + (1-t)g(x_2)$$

(c) Let d_k be the k-th descent direction respectively. Then we have

$$d_k = -\nabla g(x_k) = b - Ax_k.$$

Since g(x) is convex function, $g(x_k - \alpha \nabla g(x_k))$ is also convex function for variable α . To find α_k that solves the one-dimensional minimization

$$\min_{\alpha \ge 0} g(x_k - \alpha \nabla f(x_k)),$$

we only need to find α_k satisfying

$$\frac{\partial g(x_k - \alpha \nabla f(x_k))}{\partial \alpha} = 0$$

Then we have

$$\nabla g(x_k - \alpha_k \nabla g(x_k))^T (-\nabla g(x_k)) = 0$$

 $\nabla g(x_{k+1})^T (-\nabla g(x_k)) = 0$

Since $x_{k+1} = x_k - \alpha_k \nabla g(x_k)$,

Hence,

$$d_{k+1}^T d_k = 0.$$