MATH3230A Numerical Analysis

Tutorial 6 with solution

1 Recall:

1. Broyden's Method:

(a) - Scant Condition: $A_{k}\left(x_{k}-x_{k-1}\right)=F\left(x_{k}\right)-F\left(x_{k-1}\right)$.

- Rank one update of $A: B=A+\mathbf{u v}^{T}$.
- Sherman-Morrison formula: $B^{-1}=A^{-1}-\frac{\left[A^{-1}(\mathbf{u} \otimes \mathbf{v}) A^{-1}\right]}{\mathbf{v} \cdot A^{-1} \mathbf{u}}$
(b) With extra condition on mimicking behavior of the true Jacobian along the the line joining x_{k-1} and x_{k}, the following 'bad' Broyden's method is derived:
Select \mathbf{x}_{0} and A_{0}. For $k=0,1,2, \cdots$, do the following
- Compute \mathbf{d}_{k} using $\mathbf{d}_{k}=-A_{k}^{-1} F\left(\mathbf{x}_{k}\right)$
- Update \mathbf{x}_{k+1} by $\mathbf{x}_{k+1}=\mathbf{x}_{k}+\mathbf{d}_{k}$
- Update $\mathbf{u}_{k}=A_{k}^{-1} F\left(\mathbf{x}_{k+1}\right), c_{k}=\mathbf{d}_{k}^{T} \mathbf{d}_{k}+\mathbf{d}_{k} \cdot \mathbf{u}_{k}$.
- Update $A_{k+1}^{-1}=A_{k}^{-1}-\frac{1}{c_{k}}\left(\mathbf{u}_{k} \otimes \mathbf{u}_{k}\right)$

One order of computaional expense is saved compared with Newton's Method.
(c) Convergence of Broyden's method:

For the 'good' Broyden's method, if
i. $F(\mathbf{x})$ is differentiable, Jacobian $D F(\mathbf{x})$ is Lipschitz continuous with constant γ on a convex open set $D \subset \mathbb{R}^{n}$.
ii. \mathbf{x}^{*} satisfies $F\left(\mathbf{x}^{*}\right)=0$ and $D F\left(\mathbf{x}^{*}\right)$ is invertible.
iii. $\left\|\mathbf{x}_{0}-\mathbf{x}^{*}\right\|<\epsilon$ and $\| A_{0}-D F\left(\mathbf{x}^{*} \|<\delta\right.$ for some constants ϵ, δ.

Then $\left\|\mathbf{x}_{k+1}-\mathrm{x}^{*}\right\| \leq \frac{1}{2}\left\|\mathrm{x}_{k}-\mathrm{x}^{*}\right\|$
2. Steepest Descent Method:

- To solve the equation $F(\mathbf{x})=0$, we first let $g(\mathbf{x})=F(\mathbf{x})^{T} F(\mathbf{x}) / 2$. Select \mathbf{x}_{0}. For $k=0,1,2, \cdots$, do the following
- Find α_{k} that solves the one-dimensional minimization

$$
\min _{\alpha \geq 0} g\left(x_{k}-\alpha \nabla g\left(\mathbf{x}_{k}\right)\right)
$$

- Update \mathbf{x}_{k+1} by

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-\alpha_{k} \nabla g\left(\mathbf{x}_{k}\right)
$$

- For a linear problem, select \mathbf{x}_{0}. For $k=0,1,2, \cdots$, do the following
- compute

$$
\mathbf{d}_{k}=\mathbf{b}-A \mathbf{x}_{k}, \quad \alpha_{k}=\frac{\mathbf{d}_{k} \cdot \mathbf{d}_{k}}{\mathbf{d}_{k} \cdot A \mathbf{d}_{k}}
$$

- Update \mathbf{x}_{k+1} by

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-\alpha_{k} \mathbf{d}_{k}
$$

2 Exercises:

Please submit solutions of problems with $\operatorname{star}\left(^{*}\right)$ before $6: 30 \mathrm{PM}$ on Wednesday and finish the rest by yourself.

1. * Consider the following equation

$$
\begin{equation*}
\mathbf{F}(\mathbf{x})=0 \tag{1}
\end{equation*}
$$

where $\mathbf{F}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a non-linear function.
(a) Point out the derivation of the following relationship:

$$
\begin{equation*}
A_{k}=A_{k-1}+\frac{\left(F\left(\mathbf{x}_{k}\right)-F\left(\mathbf{x}_{k-1}\right)-A_{k-1} \mathbf{d}_{k-1}\right) \otimes \mathbf{d}_{k-1}}{\mathbf{d}_{k-1}^{T} \mathbf{d}_{k-1}}, \quad \text { where } \quad \mathbf{d}_{k-1}=\mathbf{x}_{k}-\mathbf{x}_{k-1} \tag{2}
\end{equation*}
$$

then write down the Broyden's method using (2) without involving A_{k}^{-1} in your computaion. This is also called 'good' Broyden's method.
(b) Consider the following system of equations

$$
\begin{equation*}
\mathbf{F}(\mathbf{x})=\mathbf{F}(x, y)=\binom{x-y-1}{x^{2}+x y-6} \in \mathbb{R}^{2} \tag{3}
\end{equation*}
$$

Compute the first two iterations using 'good/bad' Broyden's method to solve (3) with initial value $\mathbf{x}_{0}=(2,2)$.

Solution. (a) i. Since we require $A_{k} d_{k-1}=F\left(x_{k}\right)-F\left(x_{k-1}\right)$ and $A_{k} y=A_{k-1} y$ for all $y \cdot d_{k-1}=0$. So in (5.8), take $D=A_{k}, C=A_{k-1}, g=w=d_{k-1}, z=F\left(x_{k}\right)-F\left(x_{k-1}\right)$), then we get (2).
ii. Select \mathbf{x}_{0} and A_{0}. For $k=0,1,2, \cdots$, do the following

- Compute \mathbf{d}_{k} by solving $A_{k} \mathbf{d}_{k}=-F\left(\mathbf{x}_{k}\right)$
- Update \mathbf{x}_{k+1} by $\mathbf{x}_{k+1}=\mathbf{x}_{k}+\mathbf{d}_{k}$
- Update A_{k+1} using $A_{k+1}=A_{k}+\frac{\left(F\left(\mathbf{x}_{k+1}\right)-F\left(\mathbf{x}_{k}\right)-A_{k} \mathbf{d}_{k}\right) \otimes \mathbf{d}_{k}^{T}}{\mathbf{d}_{k}^{T} \mathbf{d}_{k}}$
(b) Using good Broyden's method, a direct computation yields

$$
\begin{aligned}
& F\left(x_{0}, y_{0}\right)=F(2,2)=\binom{-1}{2} \\
& D F(x, y)=\left(\begin{array}{cc}
1 & -1 \\
2 x+y & x
\end{array}\right)
\end{aligned}
$$

and so

$$
D F\left(x_{0}, y_{0}\right)=D F(2,2)=\left(\begin{array}{cc}
1 & -1 \\
6 & 2
\end{array}\right)
$$

Let $A_{0}=D F(2,2)$, we have

$$
d_{1}=-A_{0}^{-1} F\left(x_{0}\right)=\frac{1}{8}\left(\begin{array}{cc}
2 & 1 \\
-6 & 1
\end{array}\right)\binom{-1}{2}=\binom{0}{-1}
$$

We then update x_{1} by $x_{1}=x_{0}+d_{1}=\binom{2}{2}+d_{1}=\binom{2}{1}$
Now we update A_{1} by $A_{1}=A_{0}+\frac{\left(F\left(x_{1}, y_{1}\right)-F\left(x_{0}, y_{0}\right)-A_{0} d_{1}\right) \otimes d_{1}}{d_{1}^{T} d_{1}}$:

$$
A_{1}=\left(\begin{array}{cc}
1 & -1 \\
6 & 2
\end{array}\right)+\left(\binom{0}{0}-\binom{-1}{2}-\left(\begin{array}{cc}
1 & -1 \\
6 & 2
\end{array}\right)\binom{0}{-1}\right)\binom{0}{-1}^{T} / 1
$$

That is,

$$
A_{1}=\left(\begin{array}{cc}
1 & -1 \\
6 & 2
\end{array}\right)
$$

Similarly, we have $d_{2}=\binom{0}{0}, x_{2}=\binom{2}{1}$.
2. * Consider the following equation

$$
\begin{equation*}
\mathbf{F}(\mathbf{x})=0 \tag{4}
\end{equation*}
$$

where $\mathbf{F}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a non-linear function. Instead of solving (4), we minimize the following function:

$$
\begin{equation*}
g(\mathbf{x})=\frac{1}{2} \mathbf{F}(\mathbf{x})^{T} \mathbf{F}(\mathbf{x}) \tag{5}
\end{equation*}
$$

(a) Show that $\nabla g(\mathbf{x})=D \mathbf{F}(x)^{T} \mathbf{F}(\mathbf{x})$ by direct calculation..
(b) State the Steepest Descent Method to minimize the function (5).
(c) Consider the special case of $\mathbf{F}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, apply the Steepest Descent Method algorithm to solve:

$$
\mathbf{F}(x, y)=\binom{2 x+y}{x-y+1}=\mathbf{0} .
$$

Give all the detailed computing steps for the first iteration with initial guess $\left(x_{0}, y_{0}\right)^{T}=(1,0)$.

Solution.

(a) Denote

$$
F(\mathbf{x})=\left(f_{1}(\mathbf{x}), f_{2}(\mathbf{x}), \ldots, f_{n}(\mathbf{x})\right), \quad \text { and } \quad \mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

By definition, we have

$$
\nabla g(\mathbf{x})=\frac{1}{2}\left(\begin{array}{c}
\frac{\partial}{\partial x_{1}}\left(\sum_{i=1}^{n} f_{i}(\mathbf{x}) f_{i}(\mathbf{x})\right) \\
\frac{\partial}{\partial x_{2}}\left(\sum_{i=1}^{n} f_{i}(\mathbf{x}) f_{i}(\mathbf{x})\right) \\
\vdots \\
\frac{\partial}{\partial x_{n}}\left(\sum_{i=1}^{n} f_{i}(\mathbf{x}) f_{i}(\mathbf{x})\right)
\end{array}\right)
$$

W.L.O.G, we consider

$$
\begin{aligned}
& \frac{\partial}{\partial x_{1}}\left(\sum_{i=1}^{n} f_{i}(\mathbf{x}) f_{i}(\mathbf{x})\right) \\
= & \sum_{i=1}^{n} \frac{\partial}{\partial x_{1}}\left(f_{i}(\mathbf{x}) f_{i}(\mathbf{x})\right) \\
= & \sum_{i=1}^{n} \frac{\partial f_{i}(\mathbf{x})}{\partial x_{1}} f_{i}(\mathbf{x})+\sum_{i=1}^{n} f_{i}(\mathbf{x}) \frac{\partial f_{i}(\mathbf{x})}{\partial x_{1}} \\
= & 2\left(\frac{\partial F(\mathbf{x})}{\partial x_{1}}\right)^{T} \cdot F(\mathbf{x}) .
\end{aligned}
$$

Therefore, we have

$$
\nabla g(\mathbf{x})=\left(\begin{array}{c}
\left(\frac{\partial F(\mathbf{x})}{\partial x_{1}}\right)^{T} \cdot F(\mathbf{x}) \\
\left(\frac{\partial F(\mathbf{x})}{\partial x_{2}}\right)^{T} \cdot F(\mathbf{x}) \\
\vdots \\
\left(\frac{\partial F(\mathbf{x})}{\partial x_{n}}\right)^{T} \cdot F(\mathbf{x})
\end{array}\right)=D F(\mathbf{x})^{T} F(\mathbf{x})
$$

(b) To solve $F(\mathbf{x})=0$, let $g(\mathbf{x})=\frac{1}{2} F(\mathbf{x})^{T} F(\mathbf{x})$ and select $\mathbf{x}_{\mathbf{0}}$. For $k=0,1,2, \ldots$, do the following:
i. Find α_{k} that solve the one-dimensional minimization

$$
\begin{equation*}
\left.\min _{\alpha \geq 0} g\left(\mathbf{x}_{\mathbf{k}}-\alpha \nabla g\left(\mathbf{x}_{\mathbf{k}}\right)\right)\right) \tag{6}
\end{equation*}
$$

ii. Update $\mathbf{x}_{\mathbf{k}+\mathbf{1}}$ by

$$
\begin{equation*}
\mathbf{x}_{\mathbf{k}+\mathbf{1}}=\mathbf{x}_{\mathbf{k}}-\alpha_{k} \nabla g\left(\mathbf{x}_{\mathbf{k}}\right) \tag{7}
\end{equation*}
$$

(c) Since $F(x, y)=\binom{2 x+y}{x-y+1}$, we have

$$
g(x, y)=\left((2 x+y)^{2}+(x-y+1)^{2}\right) / 2
$$

and

$$
D F(x, y)=\left(\begin{array}{cc}
2 & 1 \\
1 & -1
\end{array}\right)
$$

as $\nabla g(x, y)=D F(x, y)^{T} F(x, y)$, we get

$$
\nabla g(x, y)=[D F(x, y)]^{T} F(x, y)=\binom{5 x+y+1}{x+2 y-1}
$$

Therefore $\nabla g\left(x_{0}, y_{0}\right)=\binom{6}{0}$
Now we need to solve (6) with $\left(x_{0}, y_{0}\right)^{T}=(1,0)$. We have

$$
\begin{aligned}
& g\left(\left(x_{0}, y_{0}\right)-\alpha \nabla\left(g\left(x_{0}, y_{0}\right)\right)\right) \\
= & g(1-6 \alpha, 0) \\
= & \frac{1}{2}\left(4(1-6 \alpha)^{2}+(2-6 \alpha)^{2}\right) \\
= & \frac{1}{2}\left(5(6 \alpha)^{2}-12(6 \alpha)+8\right)
\end{aligned}
$$

Therefore $g\left(\left(x_{0}, y_{0}\right)-\alpha \nabla\left(g\left(x_{0}, y_{0}\right)\right)\right)$ attends its minimum $(\alpha>0)$ when

$$
6 \alpha=\frac{6}{5}
$$

that is $\alpha=\frac{1}{5}$ Now, by (7), we obtain

$$
\begin{aligned}
\left(x_{1}, y_{1}\right)^{T} & =\left(x_{0}, y_{0}\right)^{T}-\alpha \nabla g\left(x_{0}, y_{0}\right)=\binom{1}{0}-\frac{1}{5}\binom{6}{0} \\
& =\binom{-0.2}{0}
\end{aligned}
$$

3. Consider a linear problem of finding solution \mathbf{x} to $A \mathbf{x}=\mathbf{b}$, where A is symmetric and positive definite. Defining the minimizing function $g(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} A \mathbf{x}-\mathbf{b}^{T} x$
(a) * Suppose \mathbf{x}^{*} solves $A \mathbf{x}^{*}=\mathbf{b}$, showing that \mathbf{x}^{*} minimizes $g(\mathbf{x})$.
(b) * Show that the function $g(\mathbf{x})$ is a convex function.

A function g is called convex if, for any two points \mathbf{x}_{1} and \mathbf{x}_{2} in \mathbb{R}^{n}, and $t \in[0,1]$, we have

$$
g\left(t \mathbf{x}_{1}+(1-t) \mathbf{x}_{2}\right) \leq t g\left(\mathbf{x}_{1}\right)+(1-t) g\left(\mathbf{x}_{2}\right)
$$

(c) Show that the descent direction in the $k-t h$ step is perpendicular to the $(k+1)-t h$ step. Try to draw a simple diagram to explain the geometric meaning of this phenomenon.

Solution. (a) Note for any point $z=y+x^{*}$, we have:

$$
\begin{aligned}
g(z) & =\left(y+x^{*}\right)^{T} A\left(y+x^{*}\right) / 2-b^{T}\left(y+x^{*}\right) \\
& =x^{* T} A x^{*} / 2-b^{T} x^{*}+x^{* T} A y / 2+y^{T} A x^{*} / 2+y^{T} A y / 2-b^{T} y \\
& =g\left(x^{*}\right)+y^{T} A y / 2+y^{T} A x^{*}-b^{T} y \\
& =g\left(x^{*}\right)+y^{T} A y / 2 \\
& \geq g\left(x^{*}\right)
\end{aligned}
$$

The last inequality uses A is symmetric positive definite.
(b)

$$
\begin{aligned}
t g\left(x_{1}\right)+(1-t) g\left(x_{2}\right) & =t x_{1}^{T} A x_{1} / 2+(1-t) x_{2}^{T} A x_{2} / 2-t x_{1}^{T} b-(1-t) x_{2}^{T} b \\
g\left(t x_{1}+(1-t) x_{2}\right) & =t^{2} x_{1}^{T} A x_{1} / 2+(1-t)^{2} x_{2}^{T} A x_{2} / 2+t(1-t) x_{1}^{T} A x_{2}-t x_{1}^{T} b-(1-t) x_{2}^{T} b
\end{aligned}
$$

Note

$$
\begin{equation*}
0<\left(x_{1}^{T}-x_{2}^{T}\right) A\left(x_{1}-x_{2}\right)=x_{1}^{T} A x_{1}+x_{2}^{T} A x_{2}-2 x_{1}^{T} A x_{2} \tag{8}
\end{equation*}
$$

We have

$$
\begin{aligned}
g\left(t x_{1}+(1-t) x_{2}\right) & \leq t^{2} x_{1}^{T} A x_{1} / 2+(1-t)^{2} x_{2}^{T} A x_{2} / 2+t(1-t)\left(x_{1}^{T} A x_{1}+x_{2}^{T} A x_{2}\right) / 2-t x_{1}^{T} b-(1-t) x_{2}^{T} b \\
& \leq t x_{1}^{T} A x_{1} / 2+(1-t) x_{2}^{T} A x_{2} / 2-t x_{1}^{T} b-(1-t) x_{2}^{T} b \\
& \leq t g\left(x_{1}\right)+(1-t) g\left(x_{2}\right)
\end{aligned}
$$

(c) Let d_{k} be the k-th descent direction respectively. Then we have

$$
d_{k}=-\nabla g\left(x_{k}\right)=b-A x_{k}
$$

Since $g(x)$ is convex function, $g\left(x_{k}-\alpha \nabla g\left(x_{k}\right)\right)$ is also convex function for variable α. To find α_{k} that solves the one-dimensional minimization

$$
\min _{\alpha \geq 0} g\left(x_{k}-\alpha \nabla f\left(x_{k}\right)\right)
$$

we only need to find α_{k} satisfying

$$
\frac{\partial g\left(x_{k}-\alpha \nabla f\left(x_{k}\right)\right)}{\partial \alpha}=0
$$

Then we have

$$
\nabla g\left(x_{k}-\alpha_{k} \nabla g\left(x_{k}\right)\right)^{T}\left(-\nabla g\left(x_{k}\right)\right)=0
$$

Since $x_{k+1}=x_{k}-\alpha_{k} \nabla g\left(x_{k}\right)$,

$$
\nabla g\left(x_{k+1}\right)^{T}\left(-\nabla g\left(x_{k}\right)\right)=0
$$

Hence,

$$
d_{k+1}^{T} d_{k}=0
$$

