
MATH3230A Numerical Analysis

Tutorial 5 with solution

1 Recall:
1. LU factorization with partial pivoting:

Idea:
Permute the rows so that the largest entry in magnitude in the column becomes the pivot.

Strategy:
At the kth stage of the LU factorization, suppose the matrix A becomes Ak = (a

(k)
ij ). Then determine an

index pk for which |a(k)pk,k
| is the largest among all |a(k)j,k | for k ≤ j ≤ n. Then interchange rows k and pk before

proceeding the next step of the factorization.

2. Least-square solution for general non-square linear systems:
Let A be a m× n matrix, with m > n and now we consider a general linear system

Ax = b. (1)

The least square solution seeks for some vector x that minimizes the error (Ax− b) in the least square sense,
that is

min
x∈Rn

‖Ax− b‖22

We assume that the columns of A are linearly independent. We define

f(x) = ‖Ax− b‖22

The minimizer of f(x) satisfies the normal equation

ATAx = AT b.

3. Newton’s method for general nonlinear systems Consider the following system of nonlinear equation:

f1(x1, x2, · · · , xn) = 0,

f2(x1, x2, · · · , xn) = 0,

...

fn(x1, x2, · · · , xn) = 0.

(2)

where each fi(x1, x2, · · · , xn) is a nonlinear function of n variables x1, x2, · · · , xn. The system can be written
simply as

F (x) = 0,

where F (x) = (f1(x), f2(x), · · · , fn(x))T , and x = (x1, x2, · · · , xn)T .
The Newton’s method for solving F (x) = 0 is as follows: Given x0, for k = 0, 1, 2, · · · , do the following

(a) Compute dk by solving
F ′(xk)dk = −F (xk).
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(b) Update xk+1 by
xk+1 = xk + dk.

4. Convergence of Newton’s method for general nonlinear systems:
Assume F satisfies the following assumptions:

(a) There is a solution x∗ to the equation F (x) = 0;
(b) Jacobian matrix F ′(x∗) is nonsingular;
(c) Jacobian F ′ : Ω→ Rn×n is Lipschitz continuous with Lipschitz constant γ, i.e. we have

‖F ′(x)− F ′(x∗)‖ ≤ γ‖x− x∗‖

Theorem 1 (Quadratically convergence of Newton’s method). Under the three assumptions above, there exist
constant K > 0 and δ > 0 such that for any x0 ∈ Bδ(x∗), the sequence {xn} generated by the Newton’s method
satisfies xn ∈ Bδ(x∗), and

‖xn+1 − x∗‖ ≤ K‖xn − x∗‖2, n = 0, 1, 2, · · ·
So Newton’s method converges quadratically.

2 Exercises:
Please submit solutions of problems with star(*) before 6:30PM on Wednesday and finish the rest by yourself.

1. * Suppose A ∈ Rn×n is strictly column diagonally dominant, which means that for each k,

|akk| >
∑
j 6=k

|ajk|

Show that if LU factorization with partial pivoting is applied to A, no row interchanges take place.

Solution.

Since |a11| >
∑
j 6=1 |aj1|, there is no need to interchange row for the first step. Then we do the Gaussian

elimination. We denote the A(1) be the matrix A after the first step Gaussian elimination. Then we obtain
for j > 1, a(1)ij = aij − ai1

a11
a1j . Hence, ∀k > 1,

n∑
j=2
j 6=k

∣∣∣a(1)j,k∣∣∣ =

n∑
j=2
j 6=k

∣∣∣∣aj,k − aj,1 a1,ka1,1

∣∣∣∣
6

n∑
j=2
j 6=k

|aj,k|+
n∑
j=2
j 6=k

|aj,1|
|a1,k|
|a1,1|

< |ak,k| − |a1,k|+ |a1,k|
n∑
j=2
j 6=k

|aj,1|
|a1,1|

6 |ak,k| − |a1,k|+ |a1,k|
(

1− |ak,1|
|a1,1|

)
6 |ak,k| − |a1,k|

|ak,1|
|a1,1|

6

∣∣∣∣ak,k − a1,k ak,1a1,1

∣∣∣∣
6
∣∣∣a(1)k,k∣∣∣

Therefore A(1) is also strictly column diagonally dominant matrix. The argument repeats and the result is
proved.
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2. (a) Assume that if matrix Am×n is full rank, we can find the least square solution x∗ which minimizes the
energy:

1

2
‖Ax− b‖22 .

Prove that solving for x∗ is equal to solve the following equation

ATAx = AT b.

(b) * Solve the following linear system using the Cholesky factorization in least square sense.

Ax = b, A =



1 −1 1

−1 1 1

0 1 −1

0 1 −1


, b =



2

1

1

−2


Solution. (a) See lecture notes.
(b) Note that

ATA =


2 −2 0

−2 4 −2

0 −2 4


Then

ATA =


√

2 −
√

2 0

0
√

2 −
√

2

0 0
√

2



T 
√

2 −
√

2 0

0
√

2 −
√

2

0 0
√

2

 = RTR

First we solve Ry = AT b, we have

y =


1√
2

− 1√
2

3√
2


then we solve Rx = y, we have

x =


3
2

1

3
2



3. * Consider the following system of linear equation

x − 3z = 2

2x − 2y + z = 1

− y + 3z = −2
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(a) Formulate the Newton’s method for solving the above system of linear equation.
(b) Find the number of iteration for the Newton’s method to return the exact solution with initial guess

X0 = (0, 0, 0)T .
(c) What does Newton’s method reduce to for the linear system Ax = b given by

a11x1 + a12x2 + · · ·+ a1nxn = b1,

a21x1 + a22x2 + · · ·+ a2nxn = b2,

...
an1x1 + an2x2 + · · ·+ annxn = bn,

where A is a nonsingular matrix?

Solution. (a) Let

f1(x, y, z) = x− 3z − 2

f2(x, y, z) = 2x− 2y + z − 1

f3(x, y, z) = −y + 3z + 2.

Denote X = (x, y, z)T , F (X) = (f1(X), f2(X), f3(X))T .
Note that

F ′(X) =


1 0 −3

2 −2 1

0 −1 3

 := A

Set initial value X0 = (x0, y0, z0)T , Newton’s method gives:

Xk+1 = Xk − F ′(Xk)−1F (Xk) = Xk −A−1F (Xk)

(b) The first iteration of Newton’s method will be

X1 = X0 −A−1F (X0) = (5, 5, 1)T ,

which is the solution of the system of linear equation. So one iteration will return the exact solution.
(c) Since fj(x1, · · · , xn) = aj1x1 + aj2x2 + · · ·+ ajnxn − bj , we have ∂fj

∂xi
= aji. Hence,

F ′(X) =



a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

an1 an2 · · · ann


:= A.

Further,

F (X0) =



a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

an1 an2 · · · ann


X0 −



b1

b2

...

bn


= AX0 − b
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Thus, given X0, we have

X1 = X0 −A−1(AX0 − b)
= X0 −A−1AX0 +A−1b

= A−1b

So given any X0, the solution to the linear system is X1.

4. Consider the following system of nonlinear equations

F (x) = 0, (3)

where F : Rn → Rn is a vector-valued function.

(a) Please write down the three standard assumptions on F such that the Newton’s method works and
converges quadratically.

(b) * Let x∗ denote the solution that F(x∗) = 0. Consider the function

g(t) = F(x∗ + (x− x∗)t), t ∈ [0, 1],

show that

F(x)− F(x∗) =

ˆ 1

0

F′(x∗ + (x− x∗)t)(x− x∗)dt.

(c) Please prove that: there exists a δ > 0 such that for all x ∈ Bδ(x∗), it holds true that:

i. ‖F′(x)− F′(x∗)‖ ≤ γ‖x− x∗‖,
ii. ‖F′(x)‖ ≤ 2‖F′(x∗)‖,
iii. ‖F′(x)−1‖ ≤ 2‖F′(x∗)−1‖
iv. 1

2‖F
′(x∗)−1‖−1‖x− x∗‖ ≤ ‖F(x)‖ ≤ 2‖F′(x∗)‖‖x− x∗‖,

where γ is the Lipschitz constant of the Jacobian F ′.

(d) * Based on the the results from (b)(c) and your assumptions in (a), please prove the quadratic convergence
of the Newton’s method for system of nonlinear equations.

Solution. (a) The assumptions are:
1. There is a solution x∗ to the equation F (x) = 0.
2. Jacobian matrix F ′(x∗) is nonsingular.
3. Jacobian F ′ : Ω→ Rn×n is Lipschitz continuous.

(b) By the fundamental theorem of calculus and the change of variables,

g(1)− g(0) =

ˆ 1

0

dg

dt
dt

Substituting g(t) = F(x∗ + (x− x∗)t, we have

F(x)− F(x∗) =

ˆ 1

0

F′(x∗ + (x− x∗)t)(x− x∗)dt

(c) Part of (iv): Note that if x ∈ Bδ(x∗) then x∗ + t(x − x∗) ∈ Bδ(x∗) for all 0 ≤ t ≤ 1. Using the result
from (b) and inequality (ii), we can easily obtain the right side of (iv):

‖F (x)‖ ≤
ˆ 1

0

‖F ′(x∗ + t(x− x∗))‖ ‖x− x∗‖dt ≤ 2‖F ′(x∗)‖‖x− x∗‖

For the left side, please refer to page 106 in the lecture notes.
Also, please read the proof of (i)-(iii) in the notes.
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(d) By the definition we have

xn+1 − x∗ = xn − x∗ − F′(xn)−1F(xn)

= F′(xn)−1 (F′(xn)(xn − x∗)− F(xn))

= F′(xn)−1
(
F′(xn)(xn − x∗)−

ˆ 1

0

F′(x∗ + (xn − x∗)t)(xn − x∗)dt

)
= F′(xn)−1

ˆ 1

0

(F′(xn)− F′(x∗ + (xn − x∗)t)) (xn − x∗)dt

Using the properties, we have

‖xn+1 − x∗‖ ≤ (2‖F ′(x∗)−1‖)γ‖xn − x∗‖2/2

This completes the proof.

5. Let A be nonsingular, and let LU factorization with pivoting takes the form:

U = Ln−1Pn−1 · · ·L2P2L1P1A

where Li is elementary matrix and U is upper triangular matrix.

(a) * Solve the following system using the LU factorization with pivoting, and please find each of the matrix

U,Li, Pi, i = 1, 2, · · · , n− 1,

where n is the row number of the matrix.

3 6 2 5 1

5 5 2 4 4

6 6 8 2 2

4 7 9 3 8

5 3 5 7 2





x1

x2

x3

x4

x5


=



46

57

60

97

64


(b) Denote P = Pn−1 · · ·P1. Prove

PA = LU

where L is lower triangular matrix with 1 as its diagonal entries and all entries of L satisfy

|lij | ≤ 1,

U is upper triangular matrix.

(c) Find P,L, U in (b) according to question (a) such that

PA = LU

where A is the matrix in (a).

(d) Explain when it is necessary to do the LU factorization with partial pivoting.

Solution.
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(a) R3↔ R1 

1

1

1

1

1





3 6 2 5 1

5 5 2 4 4

6 6 8 2 2

4 7 9 3 8

5 3 5 7 2


=



6 6 8 2 2

5 5 2 4 4

3 6 2 5 1

4 7 9 3 8

5 3 5 7 2


LU 

1

− 5
6 1

− 1
2 1

− 2
3 1

− 5
6 1





6 6 8 2 2

5 5 2 4 4

3 6 2 5 1

4 7 9 3 8

5 3 5 7 2


=



6 6 8 2 2

0 − 14
3

7
3

7
3

3 −2 4 0

3 11
3

5
3

20
3

−2 − 5
3

16
3

1
3


R3↔ R2 

1

1

1

1

1





6 6 8 2 2

0 − 14
3

7
3

7
3

3 −2 4 0

3 11
3

5
3

20
3

−2 − 5
3

16
3

1
3


=



6 6 8 2 2

3 −2 4 0

0 − 14
3

7
3

7
3

3 11
3

5
3

20
3

−2 − 5
3

16
3

1
3


LU 

1

1

0 1

−1 1

2
3 1





6 6 8 2 2

3 −2 4 0

0 − 14
3

7
3

7
3

3 11
3

5
3

20
3

−2 − 5
3

16
3

1
3


=



6 6 8 2 2

3 −2 4 0

− 14
3

7
3

7
3

17
3 − 7

3
20
3

−3 8 1
3


R4↔ R3 

1

1

1

1

1





6 6 8 2 2

3 −2 4 0

− 14
3

7
3

7
3

17
3 − 7

3
20
3

−3 8 1
3


=



6 6 8 2 2

3 −2 4 0

17
3 − 7

3
20
3

− 14
3

7
3

7
3

−3 8 1
3
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LU 

1

1

1

14
17 1

9
17 1





6 6 8 2 2

3 −2 4 0

17
3 − 7

3
20
3

− 14
3

7
3

7
3

−3 8 1
3


=



6 6 8 2 2

3 −2 4 0

17
3 − 7

3
20
3

3
17

133
17

115
17

197
51


R5↔ R4 

1

1

1

1

1





6 6 8 2 2

3 −2 4 0

17
3 − 7

3
20
3

3
17

133
17

115
17

197
51


=



6 6 8 2 2

3 −2 4 0

17
3 − 7

3
20
3

115
17

197
51

3
17

133
17


LU 

1

1

1

1

− 7
115 1





6 6 8 2 2

3 −2 4 0

17
3 − 7

3
20
3

115
17

197
51

3
17

133
17


=



6 6 8 2 2

3 −2 4 0

17
3 − 7

3
20
3

115
17

197
51

2618
345


(b) From pivoting form:

U = Ln−1Pn−1...L2P2L1P1A

Now we claim that there exists some L(k) such that

Ln−1Pn−1...L2P2L1P1 = L(n−1)L(n−2) . . . L(1)Pn−1Pn−2 . . . P1

such that the structure of L(k) is equal to Lk but with the subdiagonal entries permuted.
We prove the claim as follows: Define

L(n−1) = Ln−1, L(n−2) = Pn−1Ln−2P
−1
n−1,

L(n−3) = Pn−1Pn−2Ln−3P
−1
n−2P

−1
n−1 , . . .

we have

L(n−1)L(n−2) . . . L(1)Pn−1Pn−2 . . . P1

=Ln−1(Pn−1Ln−2P
−1
n−1)(Pn−1Pn−2Ln−3P

−1
n−2P

−1
n−1) . . . Pn−1Pn−2 . . . P1

=Ln−1Pn−1Ln−2Pn−2 . . . L1P1

(4)

Therefore we have
U = (L(n−1)L(n−2) . . . L(1))(Pn−1Pn−2 . . . P1)A

As L(k) has the same structure as Lk for all k, we can combine them to form a lower triangular matrix
with 1’s as diagonal entries. Therefore we have proved the result.
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(c) P and U are the same as in (a).

L =



1

1
2 1

2
3 1 1

5
6 − 2

3 − 9
17 1

5
6 0 − 14

17
7

115 1


, U =



6 6 8 2 2

3 −2 4 0

17
3 − 7

3
20
3

115
17

197
51

2618
345


, P =



1

1

1

1

1


(d) When the absolute value of diagonal entry is too small at certain stage of the LU factorization, it may

force algorithm to stop or cause buffer overflow.
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