MATH3230A Numerical Analysis

Tutorial 3

1 Recall:

1. Floating-point arithmetic:

(a) Floating-point representation of a binary number is:

$$
a= \pm q \times 2^{m}
$$

where $\pm q$ is a a real number and denoted as significand or mantissa, m is an integer and denoted as exponent.
(b) IEEE floating-point arithmetic standard:

Single precision floating-point representation (stored on 32 bits) is:

$$
a=(-1)^{s}\left(1 . f_{1} f_{2} \ldots f_{23}\right)_{2} \times 2^{\left(m_{1} m_{2} \ldots m_{8}\right)_{2}-127}
$$

Double precision floating-point representation (stored on 64 bits) is:

$$
a=(-1)^{s}\left(1 . f_{1} f_{2} \ldots f_{52}\right)_{2} \times 2^{\left(m_{1} m_{2} \ldots m_{11}\right)_{2}-1023}
$$

A machine number is a real number which can be represented as the normalized floating-point form as above.
In both representation above, values of m with $(00 \ldots 00)_{2}$ and $(11 \ldots 11)_{2}$ are reserved for ± 0 and $\pm \infty$.
(c) Given a real number x, let $f l(x)$ be the floating point representation of x, which means

$$
\left|\frac{f l(x)-x}{x}\right| \leq 2^{-\beta}:=\epsilon_{m}
$$

where ϵ_{m} is the machine precision/ machine unit roundoff error. Then we can write

$$
f l(x)=x(1+\epsilon)
$$

with $|\epsilon| \leq \epsilon_{m}$.
2. Solutions of linear systems of algebraic equations
(a) p-norm of vector is defined as:

$$
\|x\|_{p}=\left\{\begin{array}{lll}
\left(\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p} \cdots+\left|x_{n}\right|^{p}\right)^{1 / p} & \text { for } \quad 1 \leq p<\infty \\
\max _{1 \leq i \leq n}\left|x_{i}\right| & \text { for } \quad p=\infty
\end{array}\right.
$$

And the corresponding matrix norm is $\|A\|_{p}:=\max _{\|x\|_{p}=1}\|A x\|_{p}$ for $1 \leq p \leq \infty, p \in \mathbb{N}$.
(b) Sensitivity of linear systems:

Consider the linear system $A x=b, b \neq 0$ and the pertubed system: $\tilde{A} \tilde{x}=b$. If we write $\tilde{A}=A+E$, then

$$
\frac{\|\tilde{x}-x\|}{\|\tilde{x}\|} \leq\left\|A^{-1} E\right\|=\left\|A^{-1} \tilde{A}-I\right\|
$$

In addition, if $\left\|A^{-1} E\right\|<1$, we have

$$
\frac{\|\tilde{x}-x\|}{\|x\|} \leq \frac{\left\|A^{-1} E\right\|}{1-\left\|A^{-1} E\right\|}
$$

The real number $\kappa(A)$ given by

$$
\kappa(A)=\|A\|\left\|A^{-1}\right\|
$$

is called the condition number of the matrix A. For $\kappa(A)$, we have:
If $\kappa(A)=10^{k}$, one should expect to lose at least k digits of accuracy in solving the system $A x=b$.

2 Exercises:

Please submit solutions of problems with $\operatorname{star}\left(^{*}\right)$ before $6: 30 \mathrm{PM}$ on Wednesday and finish the rest by yourself.

1. * Recall that most computers adopt the binary system. Numbers can be decoded as the following normalized floating-point representation:

$$
\begin{equation*}
a=(-1)^{s} q \times 2^{(-1)^{p} \cdot m}, \tag{1}
\end{equation*}
$$

where $s, p=0$ or $1, q=\left(1 . f_{1} f_{2} \cdots f_{h}\right)_{2}$ and $m=\left(m_{1} m_{2} \cdots m_{k}\right)_{2}$.
Remark: in this form of representation, we don't consider reserved values of m for 0 and ∞.
(a) Let $h=9, k=2$, find the smallest and second smallest positive numbers of the form (1).
(b) Let $h=4, k=8$, find the largest and second largest numbers of the form (1).

Solution. (a) Put $s=0, p=1, f=(\underbrace{00 \ldots 00}_{9})_{2}$ and $m=(11)_{2}$, the smallest positive number is

$$
2^{-3}
$$

. Put $s=0, p=1, f=(\underbrace{00 \ldots 01}_{8})_{2}$ and $m=(11)_{2}$, the second smallest positive number is:

$$
(\underbrace{1.00 \ldots 01}_{8})_{2} \times 2^{-3}=\left(1+2^{-9}\right) \times 2^{-3} .
$$

(b) Put $s=0, p=0, f=(1111)_{2}$ and $m=(\underbrace{11 \ldots 11}_{8})_{2}$, the largest number is:

$$
(1.1111)_{2} \times 2^{2^{8}-1}=\left(2-2^{-4}\right) \times 2^{255} .
$$

Put $s=0, p=0, f=(1110)_{2}$ and $m=(\underbrace{11 \ldots 11}_{8})_{2}$, the second largest number is:

$$
(1.1110)_{2} \times 2^{255}=\left(2-2^{-3}\right) \times 2^{255} .
$$

2. Estimate the approximation errors for the following floating point operations. You can use ϵ to represent the machine precision.
(a) $* a^{n}$, where a is a positive machine number and n is a positive integer
(b) $(a+b)(a-b)$
(c) $*\left(a^{2}+b^{2}-c\right) d$
(d) $a^{2} b^{2} c$

Solution. (a) Note $f l\left(a^{2}\right) \approx a^{2}(1+\epsilon)$, then $\left.a^{n} \rightarrow f l((a) f l((a) \cdots))\right) \approx a(1+(n-1) \epsilon)$
(b) Note $f l(f l(a)+f l(b)) \approx(a+b)(1+2 \epsilon)$, then $(a+b)(a-b) \rightarrow f l(f l(f l(a)+f l(b)) \times f l(f l(a)-f l(b))) \approx$ $(a+b)(a-b)(1+5 \epsilon)$
(c) Note $f l(f l(a) \times f l(a)) \approx a^{2}(1+3 \epsilon)$, then $\left(a^{2}+b^{2}-c\right) d \rightarrow f l\left(f l\left(f l\left(f l\left(f l(a)^{2}\right)+f l\left(f l(b)^{2}\right)\right)-f l(c)\right) f l(d)\right) \approx$ $\left(a^{2}+b^{2}\right) d(1+7 \epsilon)-c d(1+4 \epsilon)$
(d) $a^{2} b^{2} c \rightarrow f l(f l(f l(f l(a) f l(a)) f l(f l(b) f l(b))) f l(c)) \approx a^{2} b^{2} c(1+9 \epsilon)$
3. * Given an invertible $n \times n$ matrix A. Let $b, b^{\delta}, x, x^{\delta} \in \mathbb{R}^{n} \backslash\{0\}$ be four non-zero vectors such that $A x=b$ and $A x^{\delta}=b^{\delta}$.
(a) Show that there exists $\kappa(A)>0$ such that

$$
\frac{1}{\kappa(A)} \frac{\left\|b-b^{\delta}\right\|}{\left\|b^{\delta}\right\|} \leq \frac{\left\|x-x^{\delta}\right\|}{\left\|x^{\delta}\right\|} \leq \kappa(A) \frac{\left\|b-b^{\delta}\right\|}{\left\|b^{\delta}\right\|}
$$

where $\|\cdot\|$ is a given norm.
(b) Let

$$
A=\left(\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right)
$$

Find $\kappa(A)$ where the norm is
i. 1-norm.
ii. sup-norm

Solution. (a) Let us first recall that

$$
\|A x\| \leq\|A\|\|x\| \quad \forall x \in \mathbb{R}^{n}
$$

Using this inquality and the fact that

$$
b=A x \quad b^{\delta}=A x^{\delta}
$$

we have
i. $\left\|b-b^{\delta}\right\| \leq\|A\|\| \| x-x^{\delta} \|$
ii. $\left\|x^{\delta}\right\| \leq\left\|A^{-1}\right\|\left\|b^{\delta}\right\|$
iii. $\left\|x-x^{\delta}\right\| \leq\left\|A^{-1}\right\|\left\|b-b^{\delta}\right\|$
iv. $\left\|b^{\delta}\right\| \leq\|A\|\left\|x^{\delta}\right\|$

Using (i) and (ii), we have

$$
\left\|b-b^{\delta}\right\| \cdot \frac{1}{\left\|b^{\delta}\right\|} \frac{1}{\|A\|\left\|A^{-1}\right\|} \leq\left\|x-x^{\delta}\right\| \cdot \frac{1}{\left\|x^{\delta}\right\|}
$$

which is the first inequality required.
Using (iii) and (iv), we have

$$
\left\|x-x^{\delta}\right\| \cdot \frac{1}{\left\|x^{\delta}\right\|} \leq\left\|b-b^{\delta}\right\| \cdot \frac{1}{\left\|b^{\delta}\right\|}\|A\|\left\|A^{-1}\right\|
$$

which is the second inequality required.
(b) \quad i. $\kappa(A)=\|A\|_{1}\left\|A^{-1}\right\|_{1}=5 \times 5=25$.
ii. $\kappa(A)=\|A\|_{\infty}\left\|A^{-1}\right\|_{\infty}=5 \times 5=25$.
4. * Consider a matrix $C \in \mathbb{R}^{n \times n}$ such that $\|C\|<1$.
(a) Show that

$$
\lim _{n \rightarrow \infty} C^{n}=\mathbf{0}
$$

where $\mathbf{0}$ is a zero matrix.
(b) Show that $I-C$ is invertible and

$$
(I-C)^{-1}=I+C+C^{2}+\cdots
$$

Solution.

(a) We have:

$$
\left\|C^{n}\right\|=\left\|C\left(C^{n-1}\right)\right\| \leq\|C\|\left\|C^{n-1}\right\| \leq\|C\|^{2}\left\|C^{n-2}\right\| \leq\|C\|^{n}
$$

Thus,

$$
\lim _{n \rightarrow \infty}\left\|C^{n}\right\|=0
$$

Therefore,

$$
\lim _{n \rightarrow \infty} C^{n}=0
$$

(b) A direct computation yields

$$
(I-C)\left(I+C+C^{2}+\cdots C^{n}\right)=\left(I+C+C^{2}+\cdots C^{n}\right)-\left(C+C^{2} \cdots+C^{n+1}\right)=I-C^{n+1}
$$

In view of the results above,

$$
I=I-\lim _{n \rightarrow \infty} C^{n}=\lim _{n \rightarrow \infty}\left(I-C^{n}\right)=\lim _{n \rightarrow \infty}(I-C)\left(1+C+C^{2}+\cdots C^{n-1}\right)=(I-C)\left(I+C+C^{2}+\cdots\right)
$$

