
Lecture Notes on Numerical Analysis1

(Course code: MATH3230A)

(Academic Year: 2018/2019, First Semester)

Andrew Lam
Department of Mathematics

The Chinese University of Hong Kong
Shatin, N.T., Hong Kong

Mainly based on previous lecture notes by Prof. Jun Zou and the textbooks

Numerical Analysis: Mathematics of Scientific Computing
Brooks/Cole Publishing Co., 2009

by D. Kincaid and W. Cheney
and

Afternotes on Numerical Analysis, SIAM, 2006
by G.W. Stewart

1 The lecture notes were prepared by Andrew Kei Fong Lam for the teaching of the course “
Numerical Analysis ”. Students taking this course may use the notes as part of their reading and
reference materials. There might be many mistakes and typos, including English grammatical and
spelling errors, in the notes. It would be greatly appreciated if those students, who will use the notes
as their reading or reference material, report any mistakes and typos to the instructor Andrew Lam
for improving the lecture notes.

1



Contents

1 Introduction 4

2 Nonlinear equation in one variable 6
2.1 Iterative methods and rate of convergence . . . . . . . . . . . . . . . 6
2.2 Absolute and relative errors . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Bisection method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Newton’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Fixed-point iterative methods . . . . . . . . . . . . . . . . . . . . . . 12

3 Floating-point arithmetic 20
3.1 Decimal and binary numbers . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Normalized scientific notation . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Rounding errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Machine precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 Overflow and underflow . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6 Loss of significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.7 Error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Solutions of linear systems of algebraic equations 36
4.1 Vector and matrix norms . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Relative errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 Sensitivity of linear systems . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Condition number of a matrix . . . . . . . . . . . . . . . . . . . . . . 43
4.5 Simple solution of a linear system . . . . . . . . . . . . . . . . . . . . 45
4.6 Solutions of triangular systems . . . . . . . . . . . . . . . . . . . . . . 45
4.7 Cholesky factorization . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.8 LU factorization and Gaussian elimination . . . . . . . . . . . . . . . 54
4.9 LDU factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.10 Partial pivoting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.11 General non-square linear systems . . . . . . . . . . . . . . . . . . . . 71

5 Systems of nonlinear equations 76
5.1 Newton’s method for systems . . . . . . . . . . . . . . . . . . . . . . 76
5.2 Broyden’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3 Steepest descent method . . . . . . . . . . . . . . . . . . . . . . . . . 86

6 Polynomial interpolation 92
6.1 Vandermonde Interpolation . . . . . . . . . . . . . . . . . . . . . . . 92
6.2 Lagrange interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.3 Newton’s interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.4 Error estimates of polynomial interpolations . . . . . . . . . . . . . . 105
6.5 Chebyshev polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.6 Hermite’s interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . 109

2



7 Numerical integration 114
7.1 Simple rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.2 Composite rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.3 Newton–Cotes quadrature rule . . . . . . . . . . . . . . . . . . . . . . 117
7.4 Gaussian quadrature rule . . . . . . . . . . . . . . . . . . . . . . . . . 121

3



1 Introduction

Numerical Analysis is a fundamental branch in Computational and Applied Mathe-
matics. In this section, we list some important topics from Numerical Analysis, which
will be covered in this course.

1. Nonlinear equations of one variable. We discuss how to solve nonlinear
equations of one variable (in standard form):

f(x) = 0,

where f(x) is nonlinear with respect to variable x.

System of nonlinear equations. In most applications one may need to solve
the following more general system of nonlinear equations:

f1(x1, x2, . . . , xn) = 0,

f2(x1, x2, . . . , xn) = 0,

...

fn(x1, x2, . . . , xn) = 0,

where each fi(x1, x2, . . . , xn) is a nonlinear function of n variables x1, . . . , xn. In
general, the solutions of a system of nonlinear equations are much more compli-
cated than the solutions to a single nonlinear equation, but many methods for
equations of one variable can be generalized to systems of nonlinear equations.

2. Linear system of algebraic equations. Linear systems are often the prob-
lems one needs to solve repeatedly, or thousands times during many mathe-
matical modelling processes or physical/engineering simulations, e.g., in the
numerical solutions of a simple population model, or the more complicated elec-
tromagnetic Maxwell system. We will study how to solve the following general
system of linear algebraic equations:

Ax = b

where A ∈ Rm×n and b ∈ Rm. While a 2× 2 or a 3× 3 can be solved by hand,
as m and n become large we have to turn to computers for help. Furthermore,
when m 6= n, the system may not have a solution, then how can we define
“meaningful” solutions to the original problem?

3. Floating-point arithmetic. When computers are used for numerical com-
putations, rounding-off errors are always present. Then how can we solve the
system of linear algebraic equations Ax = b or the system of nonlinear alge-
braic equations F (x) = 0, with satisfactory accuracy? How can we judge the
solutions computed by computers are reliable?
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4. Interpolation. For a given set of observation data, can we find a function
to best describe/interpolate the data points? A prime example is population
statistics, which is very expensive to obtain. Can we infer the population in
some in-between years based on the known statistics from census years?

5. Numerical integration. Integration is involved in many practical applica-
tions, e.g., computing the physical masses, surface areas, volumes, fluxes, etc.
But most integrals are difficult or impossible to compute exactly. For the in-
tegration of a complicated function, can we compute some good approximate
value of the integral when it is impossible to calculate the integral exactly?
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2 Nonlinear equation in one variable

A nonlinear equation of one variable is an equation of the form

f(x) = 0, (2.1)

where f is a nonlinear function with respect to x, and x is the only independent
variable.

(1) Nonlinear equations may have no solutions. For example, the equation

f(x) = x2 − 4x+ 5 = 0

has no solutions in R. In fact, f(x) = (x− 2)2 + 1 ≥ 1 for all x ∈ R.

We should first check if a nonlinear equation has solutions before solving it. If
no solutions exist, then we have to look for meaningful approximate solutions
to the problem, such as those that minimize some form of error.

(2) Solutions may not be unique. Consider the equation

f(x) = sinx cosx− 1

2
= 0.

It is easy to see that x = 2n + π/4 is a solution for any integer n. But most
numerical methods can approximate only one solution with one initial guess.
So when we construct numerical methods for a nonlinear equation, we should
locate a range in which there is a unique solution to the nonlinear equation.

2.1 Iterative methods and rate of convergence

Let x∗ be an exact solution to the nonlinear equation, i.e., f(x∗) = 0. One of the most
popular and effective method to compute for x∗ is the class of iterative methods.
The idea is to start with an initial value/guess x0, and from this initial guess we
generate a sequence x1, x2, . . . , xk, xk+1, . . . such that

lim
k→∞

xk = x∗.

Many different iterative methods can be proposed to solve the same problem, and to
distinguish which is better we use the concept of rate of convergence.

Definition 2.1 (Q(uotient)-Linear convergence). Given a sequence (xn)n≥0 converg-
ing to a limit x∗. If there is a constant ρ satisfying 0 ≤ ρ ≤ 1 such that

lim
k→∞

|xk+1 − x∗|
|xk − x∗|

= ρ,

then ρ is the rate of convergence, and we say that

xk → x∗


Q-linearly with rate ρ if ρ ∈ (0, 1),

Q-superlinearly if ρ = 0,

Q-sublinearly if ρ = 1.
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Unfortunately, this definition does not apply to all converging sequences. For
example, take

a1 = a2 =
1

4
, a3 = a4 =

1

16
, a5 = a6 =

1

64
, . . . , a2k−1 = a2k =

1

22k
, . . .

which converges to zero. Then

a2
a1

= 1,
a3
a2

=
1

4
,

a4
a3

= 1,
a5
a4

=
1

4
, . . . ,

a2k−1
a2k−2

=
1

4
, . . . ,

and so the limit limn→∞
an+1

an
may not exist, since the sequence oscillates between 1

and 1
4
. However, note that

|ak| ≤
1

2k
=: εk for all k ∈ N,

and (εk)k≥0 converges to zero Q-linearly with rate ρ = 1
2
. Therefore, we can think

of (ak)k≥0 converging to zero at best linearly. This motivates the following extended
definition.

Definition 2.2 (R(oot)-Linear convergence). Given a sequence (xn)n≥0 converging
to a limit x∗. Suppose there exists a sequence (εn)n≥0 such that εn → 0 as n → ∞
and

|xn − x∗| ≤ εn for all n ∈ N.

Then, we say that

xk → x∗


R-linearly if εn → 0 Q-linearly,

R-superlinearly if εn → 0 Q-superlinearly,

R-sublinearly if εn → 0 Q-sublinearly.

Definition 2.3 (Convergence with order p). If there are two positive constants p > 1
(not necessarily an integer) and ρ such that

lim
k→∞

|xk+1 − x∗|
|xk − x∗|p

= ρ, (2.2)

then the sequence (xk)k≥0 is said to Q-converge to x∗ with order p. The constant ρ is
called the rate of convergence. If the order parameter p = 2 in (2.2), the convergence
is said to be Q-quadratic, and if p = 3 in (2.2), the convergence is said to be
Q-cubic.

If there exists a sequence (εn)n≥0 such that εn → 0 as n→∞ and

|xn − x∗| ≤ εn for all n ∈ N,

then we say (xn)n≥0 R-converges to x∗ with order p if (εn)n≥0 Q-converges to zero
with order p.

Lemma 2.1. If the sequence (xn)n≥0 Q-converges to x∗ with order p > 0, then it
Q-converges to x∗ with any order q for 0 < q < p.

Proof. Exercise.

7



2.2 Absolute and relative errors

We introduce two important concepts to measure the accuracy of approximate values
obtained from an iterative method.

Definition 2.4 (Absolute error). The absolute error between the true value (solu-
tion) x∗ and the approximate value xk is the error given by

|xk − x∗|.

The absolute error between the true value (solution) x∗ and the approximate value
xk is the error given by

|xk − x∗|.

This error considers only the distance of xk from x∗ without taking care of the
magnitude of the true solution x∗. This can cause problems in applications, for
example, consider ε = 10−5, and the true solution x∗ = 1. If we stop iteration
when |xk − x∗| ≤ 10−5, then xk has 5 accurate digits after the decimal point, i.e.,
xk = 0.99999 . . . . But if the true solution is x∗ = 10−8, then we will stop the iteration
even when xk = 10−5 since

|xk − x∗| = 10−5 − 10−8 ≤ 10−5,

this approximation xk is 1000 times of the exact solution x∗, and so it is not accurate
at all.

Definition 2.5 (Relative error). Let xk be an approximation to x∗ 6= 0, then the error

ρ =
|xk − x∗|
|x∗|

is called the relative error of xk.

This allows us to write

xk = x∗(1 + ε) = x∗ + εx∗, |ε| = ρ,

and view xk can be viewed as a small perturbation of x∗. Below we present a table
of approximation to x∗ = e = 2.7182818 . . . :

Approximation ρ accurate digits
2.0 2× 10−1 ≈ 10−1 1
2.7 6× 10−3 ≈ 10−2 2
2.71 3× 10−3 ≈ 10−3 3
2.718 1× 10−4 ≈ 10−4 4
2.7182 3× 10−5 ≈ 10−5 5
2.71828 6× 10−7 ≈ 10−6 6

and so

If the relative error of xk is approximately 10−k, then xk and x∗ agree to k digits,
and vice versa.
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2.3 Bisection method

The simplest iterative method for solving f(x) = 0 is the Bisection algorithm. It
is based on the following variant of the intermediate value theorem:

Lemma 2.2. Let f be a continuous function in the interval [a, b]. If the product
f(a)f(b) < 0, then there exists at least one solution x∗ ∈ (a, b) such that f(x∗) = 0.

Due to finite computational time, we usually can not obtain the exact solution
x∗ on a computer machine, and so we will be satisfied when we find an approximate
solution x̃∗ such that |f(x̃∗)| ≤ ε or |x̃∗−x∗| ≤ δ for some small tolerance parameters
ε and δ. One may set ε and δ to be at different magnitude in each application.

Assume that f(a) < 0 and f(b) > 0, then there exists at least one point x∗ ∈ (a, b)
such that f(x∗) = 0. Then, the Bisection Algorithm to find an approximate solution
x̃∗ proceed as follows:

1. Input a and b, and a stopping tolerance parameter δ.

2. Set a0 := a, b0 := b and k := 0.

3. While |bk − ak| > δ, set xk = 1
2
(ak + bk) as the midpoint, and do the following:

• If f(xk)f(ak) > 0 set ak+1 = xk and bk+1 = bk,

• otherwise set ak+1 = ak and bk+1 = xk.

4. Output xk if |bk − ak| ≤ δ.

Theorem 2.1 (Convergence). Let f(x) be a continuous function on [a, b] such that
f(a)f(b) < 0, then the bisection algorithm always converges to a solution x∗ of the
equation f(x) = 0, and the following error estimate holds for the kth approximate
value xk:

|xk − x∗| ≤
1

2
(bk − ak) = 2−(k+1)(b− a).

Proof. Denote by

[a0, b0], [a1, b1], . . . , [ak, bk], . . .

the successive intervals generated from the Bisection algorithm. Then, by construc-
tion

a0 ≤ a1 ≤ a2 ≤ · · · ≤ ak ≤ · · · ≤ b0, b0 ≥ b1 ≥ b2 ≥ · · · ≥ bk ≥ · · · ≥ a0,

and

bn − an =
1

2
(bn−1 − an−1) = 2−n(b0 − a0) for all n ≥ 1.
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From these properties, the sequences (ak)k≥0 and (bk)k≥0 both converge to the same
limit. Let

x∗ = lim
k→∞

ak = lim
k→∞

bk,

then

f(ak)f(bk) < 0 ⇒ f(x∗)2 ≤ 0 ⇒ f(x∗)2 = 0,

using the analysis fact (if gk → g and gk < 0, then g ≤ 0) which can be proved by a
contradiction argument. Therefore the limit x∗ is a solution to the nonlinear equation
f(x) = 0. To get the error estimate let xk be the midpoint of [ak, bk], then x∗ lies in
either [ak, xk] or [xk, bk] and thus

|xk − x∗| ≤
1

2
(bk − ak) = 2−(k+1)(b0 − a0).

Notice that it is not easy to fit |xk − x∗| ≤ 2−(k+1)(b0 − a0) into the definition of
Q-convergence, but using the extended definition we can easily see that the sequence
(xk)k≥0 generated by the Bisection algorithm converges to x∗ R-linearly.

2.4 Newton’s method

The Bisection method converges under a very weak assumption on f(x) (i.e., con-
tinuity) but the algorithm converges very slowly. Newton’s method/Newton-
Raphson method, also an iterative method, is one of the most powerful numerical
methods for solving nonlinear equations, and one advantage is that it converges Q-
quadratically if the initial guess is close to the true solution.

2.4.1 Geometric derivation

1. Start with an initial point x0, draw the tangent line to the curve y = f(x) at
the point (x0, f(x0)).

2. Find the intersection point of the tangent line with the x-axis, which Newton’s
method takes to be the new approximation x1.

3. Repeat the same procedure to get x2, x3, . . . .

To obtain a formula for x1, x2, . . . , the tangent line of the curve y = f(x) at the point
(x0, f(x0)) is given by

y − f(x0) = f ′(x0)(x− x0).

The intersection point of this line with the x-axis can be found from

−f(x0) = f ′(x0)(x− x0),
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which gives

x1 = x0 −
f(x0)

f ′(x0)
.

Similarly we can derive

x2 = x1 −
f(x1)

f ′(x1)
, . . . , xk+1 = xk −

f(xk)

f ′(xk)
, . . . ,

so that Newton’s method reads as

xn+1 = xn −
f(xn)

f ′(xn)
, n = 0, 1, 2, . . . (2.3)

Example 2.1. For a 6= 0, set f(x) = 1
x
− a. Then, Newton’s method is given by

xk+1 = xk −
f(xk)

f ′(xk)
= 2xk − ax2k, k = 0, 1, 2, · · ·

As long as x0 ∈ (0, 1
a
), the sequence (xk)k≥0 converges monotonically to the true

solution x∗ = 1
a
. The following table gives the sequence {xk} to approximate 1/a

when a = 1 with different initial guesses:

Iteration xk xk xk xk
0 0.250000 1.750000 2.000000 +2.100000× 100

1 0.437500 0.437500 0.000000 −0.210000× 100

2 0.683594 0.683594 0.000000 −4.641000× 10−1

3 0.899887 0.899887 0.000000 −1.143589× 100

4 0.989977 0.989977 0.000000 −3.594973× 100

5 0.999899 0.999899 0.000000 −2.011378× 101

6 0.999999 0.999999 0.000000 −4.447915× 102

We see that the choice of the initial guesses is very important to the convergence
of Newton’s method.

Example 2.2. Let a > 0, and set f(x) = x2− a. Then, Newton’s method is given by

xk+1 = xk −
f(xk)

f ′(xk)
=

1

2
(xk +

a

xk
), k = 0, 1, 2, . . .

The true solution is x∗ =
√
a, and for a = 2 the following table indicates that Newton’s

method converges very rapidly with quite different initial guesses. This is a unusual
example as the function is a quadratic polynomial and the method converges to x∗ =√

2 with any initial guess.

Iteration xk xk xk
0 1.000000 0.500000 6.000000
1 1.500000 2.250000 3.166667
2 1.416667 1.569444 1.899123
3 1.414216 1.421890 1.476120
4 1.414214 1.414234 1.415512
5 1.414214 1.414214 1.414214
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2.5 Fixed-point iterative methods

Newton’s method

xk+1 = xk −
f(xk)

f ′(xk)
, k = 0, 1, 2, . . . ,

requires the computation of the derivative f ′(xk) at each iteration. In some applica-
tion this may not be possible due to

(1) The expression of f(x) is unknown;

(2) The derivative f ′(x) is very expensive to compute;

(3) The value of function f may be the result of a long numerical calculation, so
the derivative has no formula available.

Example 2.3. Consider the following two-point boundary value problem:{
x′′(t) + p(t)x′(t) + q(t)x(t) = g(t), a < t < b ,

x(a) = α, x(b) = β
(2.4)

where p(t), q(t) and g(t) are given functions. One popular way to find the solution
x(t) is to first solve the following initial value problem:{

x′′(t) + p(t)x′(t) + q(t)x(t) = g(t), t > a ,

x(a) = α, x′(a) = z

for a given z. We write the solution as x(t, z), then x(t, z) will be also the solution
to the boundary-value problem (2.4) if we can find a value z such that

x(b, z) = β.

Let f(z) = x(b, z)− β, then z is the solution to the nonlinear equation

f(z) = 0.

To find such solutions z, we may apply the Newton’s method:

zk+1 = zk −
f(zk)

f ′(zk)
, k = 0, 1, 2, . . . .

But computing the derivative f ′(zk) is complicated and can not be done directly. Then
the question is can we avoid computing derivatives f ′(xk) when they are difficult to
do?
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One possibility to get rid of the derivatives in Newton’s method is to find some
approximations of the derivatives f ′(xk), say gk ≈ f ′(xk), but gk should be much easier
to compute than f ′(xk). Then we replace the Newton’s method by the following:

xk+1 = xk −
f(xk)

gk
, k = 0, 1, 2, . . . .

Such an iterative method is called a Quasi-Newton’s method. There are many
possible approximations of f ′(xk), thus generating many different quasi-Newton’s
methods. For example, one can replace f ′(xk) by the difference quotient

gk =
f(xk)− f(xk−1)

xk − xk−1
,

the resulting method is called the Secant method, which needs two initial values x0
and x1 to start. Another is to replace f ′(xk) by a constant gk = g, leading to

xk+1 = xk −
f(xk)

g
, k = 0, 1, 2, . . . , (2.5)

which is called the Constant slope method. In particular, we might take g =
f ′(x0). Both Netwon’s method and the above quasi-Newton’s methods can be seen
as special cases of fixed-point iterative methods.

Definition 2.6 (Fixed point). For a given function ϕ(x), x∗ is called its fixed point
if x∗ satisfies ϕ(x∗) = x∗.

For the Newton’s method, we have

ϕ(x) = x− f(x)

f ′(x)
,

and for quasi-Newton’s methods, we have

ϕ(x) = x− f(x)

g
.

Definition 2.7. For a given function ϕ(x), the iterative method

xk+1 = ϕ(xk) , k = 0, 1, 2, . . .

is called a fixed-point iteration associated with the function ϕ(x), and ϕ(x) is called
the iterative function.

For the fixed-point iterative method, we have the following general result regarding
convergence and order of convergence.
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Theorem 2.2. If the iterative function ϕ(x) satisfies the condition

|ϕ′(x∗)| < 1, (2.6)

then there exists a δ = δ(x∗) > 0 such that for any x0 ∈ [x∗−δ, x∗+δ], the fixed-point
iteration converges. Furthermore,

• If ϕ′(x∗) 6= 0, the convergence is Q-linear with convergence rate ρ = |ϕ′(x∗)|.

• If ϕ′(x∗) = ϕ′′(x∗) = · · · = ϕ(p−1)(x∗) = 0 but ϕ(p)(x∗) 6= 0, then the fixed-point
iteration Q-converges with order p.

Proof. For the first part, using the assumption |ϕ′(x∗)| < 1, there exists δ > 0 such
that

|ϕ′(x)| ≤ α < 1 ∀x ∈ [x∗ − δ, x∗ + δ]. (2.7)

Then, by the mean-value theorem,

x1 − x∗ = ϕ(x0)− ϕ(x∗) = ϕ′(ξ0)(x0 − x∗)

for some ξ0 lying in between x0 and x∗. Then, if x0 ∈ [x∗ − δ, x∗ + δ], it holds that
|ϕ′(ξ0)| ≤ α, and so

|x1 − x∗| = |ϕ′(ξ1)(x0 − x∗)| ≤ |ϕ′(ξ1)||x0 − x∗| ≤ αδ < δ.

This yields x1 ∈ (x∗ − δ, x∗ + δ). Then, by the mean value theorem, for k ∈ N we
have

xk+1 − x∗ = ϕ(xk)− ϕ(x∗) = ϕ′(ξk)(xk − x∗),

where ξk lies between xk and x∗. By induction, if xk ∈ (x∗ − δ, x∗ + δ), then ξk ∈
(x∗ − δ, x∗ + δ) and |ϕ′(ξk)| ≤ α with

|xk+1 − x∗| = |ϕ′(ξk)(xk − x∗)| ≤ α|xk − x∗| ≤ αδ < δ.

Hence, xk+1 ∈ (x∗ − δ, x∗ + δ). Furthermore, we have the recursive estimate

|xk+1 − x∗| ≤ α|xk − x∗| ≤ · · · ≤ αk+1|x0 − x∗|.

Since α < 1 we know that xk → x∗ as k →∞, and so the iterative method converges.
Furthermore, suppose ϕ′(x∗) 6= 0, then by the mean value theorem we find that

xk+1 − x∗ = ϕ′(ξk)(xk − x∗) ⇒ |xk+1 − x∗|
|xk − x∗|

= |ϕ′(ξk)| → |ϕ′(x∗)| as k →∞,

which implies linear convergence. For the second part, we suppose

ϕ′(x∗) = ϕ′′(x∗) = · · · = ϕ(p−1)(x∗) = 0, but ϕ(p)(x∗) 6= 0.
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We have by Taylor’s expansion,

ϕ(x) = ϕ(x∗) +
ϕ′(x∗)

1!
(x− x∗) +

ϕ′′(x∗)

2!
(x− x∗)2 + · · ·+ ϕ(p−1)(x∗)

(p− 1)!
(x− x∗)p−1

+
ϕ(p)(ξ)

p!
(x− x∗)p

where ξ lies between x and x∗. Thus by the given assumptions,

xk+1 = ϕ(xk) = ϕ(x∗) +
ϕ(p)(ξk)

p!
(xk − x∗)p = x∗ +

ϕ(p)(ξk)

p!
(xk − x∗)p.

Since ξk lies between xk and x∗, and xk → x∗ when k → ∞, so we know ξk → x∗

when k →∞. This leads to

lim
k→∞

|xk+1 − x∗|
|xk − x∗|p

=
|ϕ(p)(x∗)|

p!
6= 0,

so the convergence is of order p.

Theorem 2.3 (Quadratic convergence of Newton’s method). Let f be a function
such that f ′′(x) is continuous near x∗, f ′′(x∗) 6= 0 and f ′(x∗) 6= 0. Then, there exists
a constant δ = δ(x∗) > 0 such that if the initial guess x0 satisfies |x0 − x∗| ≤ δ, then
the sequence (xk)k≥0 generated by Newton’s method (2.3) satisfies |xk − x∗| ≤ δ and
limk→∞ xk = x∗. Moreover,

lim
k→∞

|xk+1 − x∗|
|xk − x∗|2

=
|f ′′(x∗)|
2|f ′(x∗)|

,

and so Newton’s method converges Q-quadratically.

Proof. Define the iterative function

ϕ(x) = x− f(x)

f ′(x)
.

Then, Newton’s method is given as

xk+1 = ϕ(xk), k = 0, 1, 2, . . . .

Its derivative at x∗ is

ϕ′(x∗) = 1− f ′(x∗)

f ′(x∗)
+
f(x∗)f ′′(x∗)

(f ′(x∗))2
= 0,

and so the condition (2.6) is satisfied. By Theorem 2.2 there exists δ = δ(x∗) > 0 such
that if x0 ∈ [x∗ − δ, x∗ + δ], then Newton’s method converges. Moreover, computing
the second derivative at x∗ yields

ϕ′′(x∗) =
f ′′(x∗)

f ′(x∗)
+
f ′′′(x∗)f(x∗)

(f ′(x∗))2
− 2f(x∗)(f ′′(x∗))2

(f ′(x∗))3
=
f ′′(x∗)

f ′(x∗)
.

Here we needed f ′(x∗) 6= 0, and so ϕ′′(x∗) 6= 0. This shows that Newton’s method
converges quadratically.
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Theorem 2.4 (Linear convergence of the Constant slope method). Let f be a contin-
uous function such that f ′(s) is continuous near x∗, and let g be a non-zero constant
such that ∣∣∣1− f ′(x∗)

g

∣∣∣ < 1. (2.8)

Then, there exists a constant δ = δ(x∗) > 0 such that, if the initial guess x0 satisfies
|x0 − x∗| ≤ δ, the sequence (xk)k≥0 generated by the Constant slope method (2.5)
satisfies |xk − x∗| ≤ δ and limk→∞ xk = x∗. Furthermore,

lim
k→∞

|xk+1 − x∗|
|xk − x∗|

=
∣∣∣1− f ′(x∗)

g

∣∣∣.
Hence, the constant slope method converges Q-linearly with rate of convergence ρ =
|1− f ′(x∗)/g|.

Proof. Define the iterative function

ϕ(x) = x− f(x)

g
.

Then, its derivative at x∗ is

ϕ′(x∗) = 1− f ′(x∗)

g
.

By Theorem 2.2 and the hypothesis (2.8), ϕ′(x∗) 6= 0, and so the Constant slope

method converges linearly with rate ρ = 1− f ′(x∗)
g

.

Remark 2.1. At first glance, one may consider choosing the constant g to be equal
to f ′(x∗) so that ρ = 1− f ′(x∗)

g
= 0, leading to superlinear convergence. However, this

requires knowledge about the true solution x∗ which is usually not available.

2.5.1 The Secant method

The Secant method arises from choosing gk as

gk =
f(xk)− f(xk−1)

xk − xk−1
, (2.9)

in the quasi-Newton’s method

xk+1 = xk −
f(xk)

gk
,

leading to

xk+1 =
xk−1f(xk)− xkf(xk−1)

f(xk)− f(xk−1)
= xk −

(xk − xk−1)f(xk)

f(xk)− f(xk−1)
, k = 1, 2, . . . . (2.10)
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One expects that at the beginning xk and xk−1 may not be very close, so gk is not
a very accurate approximation of f ′(xk) and the convergence of the secant method
should be slower than that of Newton’s method. But as xk gets more and more
accurate, gk approximates f ′(xk) more and more accurately, then the convergence of
the secant method should be close to the Newton’s method.

In order to study the convergence of the secant method, we introduce the two-
point iterative function:

ϕ(u, v) = u− f(u)(u− v)

f(u)− f(v)
=
vf(u)− uf(v)

f(u)− f(v)
,

then the secant method can be written in the form:

xk+1 = ϕ(xk, xk−1).

Note that ϕ is not defined for the case u = v. However, we can define

ϕ(u, u) = u− f(u)

f ′(u)
,

and so the Secant method reduces to Newton’s method for the case xk = xk−1. In
particular, ϕ(x∗, x∗) = x∗.

Theorem 2.5 (Convergence of the secant method). Let f be a continuous function
such that f ′′(s) is continuous near x∗, f ′(x∗) 6= 0 and f ′′(x∗) 6= 0. Then, there exists a
constant δ = δ(x∗) > 0 such that, if the initial guesses x0 and x1) satisfy |x0−x∗| ≤ δ
and |x1−x∗| ≤ δ, the sequence (xk)k≥0 generated by the Secant method (2.10) satisfies
|xk − x∗| ≤ δ and limk→∞ xk = x∗ at least R-linearly. Furthermore, the order of
convergence is p = (1 +

√
5)/2 ≈ 1.618.

Proof. 2 Without loss of generality, suppose α := f ′(x∗) > 0. By continuity of f ′,
there exists δ > 0 such that for x ∈ [x∗ − δ, x∗ + δ], it holds that

3α

4
≤ f ′(x) ≤ 5α

4
.

By the mean value theorem we can find ϕk lying in between xk and xk−1 such that

f(xk)− f(xk−1) = f ′(ϕk)(xk − xk−1),

and similarly, we can find θk lying in between xk and x∗ such that

f(xk)− f(x∗) = f(xk) = f ′(θk)(xk − x∗).
2The convergence proof is taken from http://www.math.usm.edu/lambers/mat772/fall10/

lecture4.pdf.
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Hence, we see that

xk+1 − x∗ = xk − x∗ −
(xk − xk−1)f(xk)

f(xk)− f(xk−1)
= xk − x∗ −

f(xk)

f ′(ϕk)

= xk − x∗ −
f ′(θk)(xk − x∗)

f ′(ϕk)
=
(

1− f ′(θk)

f ′(ϕk)

)
(xk − x∗).

Therefore, if xk−1 and xk belong to [x∗ − δ, x∗ + δ], then

|xk+1 − x∗| ≤ max
( ∣∣∣∣1− 5α/4

3α/4

∣∣∣∣ , ∣∣∣∣1− 3α/4

5α/4

∣∣∣∣ ) |xk − x∗| ≤ 2

3
|xk − x∗| .

From this we deduce two things. The first is that xk+1 also belong to [x∗− δ, x∗ + δ],
and that the error ek+1 = xk+1 − x∗ satisfies

|ek+1| ≤
2

3
|ek|

which implies the (R-linear) convergence of the Secant method. To improve our
current estimate on the order of convergence, we use (2.10) to write

ek+1 = xk+1 − x∗ =
xk−1f(xk)− xkf(xk−1)

f(xk)− f(xk−1)
− x∗f(xk)− x∗f(xk−1)

f(xk)− f(xk−1)

=
f(xk)ek − f(xk−1)ek−1

f(xk)− f(xk−1)

= ekek−1

(
f(xk)
ek−1
− f(xk−1)

ek

)
f(xk)− f(xk−1)

= ekek−1

(
f(xk)−f(x∗)

xk−x∗
− f(xk−1)−f(x∗)

xk−1−x∗

)
f(xk)− f(xk−1)

.

We define

F (s) =
f(s)− f(x∗)

s− x∗
.

Then, by the mean value theorem there exists ζk between xk−1 and xk such that

F (xk)− F (xk−1) = F ′(ζk)(xk − xk−1),

with

F ′(s) =
(s− x∗)f ′(s)− f(s) + f(x∗)

(s− x∗)2
.

By Taylor’s theorem, there exists νk between x∗ and ζk such that

f(x∗) = f(ζk) + f ′(ζk)(x
∗ − ζk) +

1

2
f ′′(νk)(x

∗ − ζk)2.
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Then, combining the above yields

F (xk)− F (xk−1) =
2

f ′′(νk)
(xk − xk−1),

and so

ek+1 = ekek−1
F (xk)− F (xk−1)

f(xk)− f(xk−1)
=

2

f ′′(νk)

xk − xk−1
f(xk)− f(xk−1)

=
2f ′(θk)

f ′′(νk)

for some θk in between xk and xk−1. The assumptions on f and the fact that {xk}k∈N
belong in [x∗ − δ, x∗ + δ] ensure that we can find a constant M such that

|ek+1| ≤M |ek| |ek−1| .

Suppose there are constants Cn > 0 and p > 0 such that

|en+1| = Cn |en|p for all n ∈ N, and Cn → C as n→∞.

Then, we find that

Ck |ek|p = |ek+1| ≤M |ek| |ek−1| ,

and so

CkC
p−1
k−1 |ek−1|

p(p−1) = Ck |ek|p−1 ≤M |ek−1| .

Hence, comparing the exponents on |ek−1| shows that p(p − 1) = 1. Taking the
positive root yields p = 1

2
(1 +

√
5).
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3 Floating-point arithmetic

3.1 Decimal and binary numbers

The decimal system expresses any number in powers of 10:

538.372 = 5× 102 + 3× 101 + 8× 100 + 3× 10−1 + 7× 10−2 + 2× 10−3.

Meanwhile computers adapt the binary system, which expresses any number in powers
of 2. In contrast, only two digits 0 and 1 are used. For example, the real number
9.90625 in the binary form is

(1001.11101)2 = 1× 23 + 0× 22 + 0× 21 + 1× 20 + 1× 2−1

+ 1× 2−2 + 1× 2−3 + 0× 2−4 + 1× 2−5.

Another example is

2.125 = 1× 21 + 1× 2−3 = (1.001)2.

Computers communicate with the human users in the decimal system but work
internally in the binary system. Conversions from decimal to binary and back to
decimal often take place within calculations. Since computers can only operate with
a fixed number of digits, some numbers like 1/10 cannot be stored exactly in any
binary computer as its binary representation has an infinite number of binary digits:

1

10
= (0.0001 1001 1001 1001 . . .)2.

Hence, it is expected that some errors will occur during the binary-decimal conversion.

3.2 Normalized scientific notation

In the decimal system, one can express any real number in normalized scientific
notation. For example, we can write

2048.6076 = 0.20486076× 104, −0.0004321 = −0.4321× 10−3.

Definition 3.1. The normalized decimal form of a nonzero real number a is

a = ±r × 10n, (3.1)

for some real number r ∈ [0.1, 1) called the significand or the mantissa, and some
integer n called the exponent.

Remark 3.1. Some people consider r to be in the range 1 ≤ r < 10, and the effect
is simply reducing the exponent n by 1.

Computers use 2 formats for numbers:
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• Fixed-point numbers - which has a specific number of bits (or digits) reserved
for the integer part (the part to the left of the decimal point) and a specific
number of bits reserved for the fractional part (the right of the decimal point).

• Floating point numbers - which does not reserve a specific number of bits for
the integer part or the fractional part. Instead it reserves a certain number of
bits for the mantissa/significand and a certain number of bits for the exponent.

Example 3.1. With 8 digits, we consider the fixed point format to be (IIII.FFFF).
Then, the range of numbers we can represent is [0000.0001, 9999.9999]. In contrast,
if we use the format (IIIIIII.F), then the range we can represent shifts to [0000000.1,
9999999.9]. While the maximum has increased by a thousand folds, so has the mini-
mum, and this comes as a cost of accuracy (since we only allow for 1 decimal place).

Example 3.2. Suppose now we allocate 2 digits for the exponent, and the remaining
6 digits for the mantissa, then the floating point format (.xxxxxx ×10±xx) gives us
the range from 10−99 to 1099, completely dwarfing the the scale from the fixed-point
format. Therefore, floating-point representation can handle much smaller and much
larger numbers compared to the fixed-point representation.

Definition 3.2. The binary form of a nonzero real number a is

a = ±(q)2 × 2m̃, (3.2)

for some binary number q denoted as the mantissa, and some number m̃ denoted as
the exponent.

Example 3.3. The decimal 11.625 can be written as

11.625 = (1011.1010)2 = 1× 23 + 1× 21 + 1× 20 + 1× 2−1 + 1× 2−3

= (1.0111010)2 × 2(11)2 ,

where (11)2 is the binary representation of the integer 3. Furthermore, we see that
shifting the binary point 1 place to the left leads

11.625 = (0.10111010)2 × 2(100)2 , (100)2 = 4.

The accuracy of a number represented by a computer is determined by the word
length of the computer, which is the number of bits processed by the CPU in one go.
Most modern computers have a word length of 32 bits or 64 bits, and the number
format for a computer with word length 32 bits is denoted as the single-precision-
floating-point format, while for 64 bits it is the double-precision-floating-point
format. These formats have three parts:

1. One bit reserved for the sign s;

2. n bits reserved for the exponent m, where n = 8 for 32 bits and n = 11 for 64
bits;
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3. r bits reserved for the mantissa q, where r = 23 for 32 bits and r = 52 for 64
bits,

so that 1 + n + r is equal to the word length of the computer. Then, the storage
format

s|m1 . . .mn|f1 . . . fr, where s,m1, . . . ,mn, f1, . . . , fr ∈ {0, 1},

represents the number

a = (−1)sq̃ × 2m̃, q̃ = (q)2 = (1.f1 . . . fr)2, m̃ = (m1 . . .mn)2 − y

where y is an integer depending only on the word length.
Let us discuss the single-precision format in more detail, which uses a 32 bit word

length with 1 bit for the sign, 8 bits for the exponent and 23 bits for the mantissa.

• The entry just before the binary point in the mantissa is set to 1. The reason
is to save storage and so all 23 bits can be used for the fractional part f1 . . . fr
after the binary point. In this way, the mantissa q̃ belongs to the interval [1, 2).

• We say that a can be expressed as a normalized binary number if in its
mantissa, there is a 1 in front of the binary point. If the entry before the binary
point is zero, then we call a a denormalized binary number - more on this
later.

• The 8 bit number (m1 . . .m8)2 ranges from 0 (given by (00000000)2) to 255
(given by (11111111)2), containing 256 possibilities. If y = 0, then m̃ can never
be negative and we lost the ability to represent tiny numbers. Therefore, an
offset y is needed so that there are an equal number of choices for non-negative
exponents and for negative exponents.

• The cases (m1 . . .m8)2 = 0 and (m1 . . .m8)2 = 255, corresponding to the cases
where all coefficients mi are zero or one, are reserved for special values such as
0 and ∞. Excluding these two leaves us with 254 possibilities, and divide this
number by two yields the offset y = 127.

• The number m = m̃− 127 is hence known as the biased exponent.

Hence, in single-precision normalized format a real number is represented as

a = (−1)s(1.f1 . . . f23)2 × 2(m1...m8)2−127. (3.3)

Example 3.4. The number 2.125 = (10.001)2 is written as

(10.001)2 = (−1)0(1.0001 00 . . . 00︸ ︷︷ ︸
19

)2 × 2128−127

= (−1)0(1.0001 00 . . . 00︸ ︷︷ ︸
19

)2 × 2(1000000)2−127,

so that its computer representation is:

0|10000000|0001 00 . . . 00︸ ︷︷ ︸
19

.
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In computer systems there are certain special values, such as 0,∞ and NaN (not-
a-number). The latter occurs during invalid floating-point arithmetic operations, such
as the square root of a negative number, or computing 0/0 or ∞−∞. The format
for these special values are given as follows:

• Zero is represented as

s|00000000| 0000 . . . 0000︸ ︷︷ ︸
23

where s = 0 gives +0 and s = 1 gives −0.

• Infinity is represented as

s|11111111| 0000 . . . 0000︸ ︷︷ ︸
23

where s = 0 gives +∞ and s = 1 gives −∞.

• NaN is represented as

s|11111111|f1 . . . f23

where at least one of the fi is not zero.

Remark 3.2. From the three special values we see that there remains the possibility

s|00000000|f1 . . . f23

where at least one of the fi is not zero. It turns out that these formats are reserved
for so-called denormalized numbers, which are represented as

a = (−1)s(0.f1 . . . f23)2 × 2−127.

The difference between normalized and denormalized numbers is that the former has 1
before the binary point and the latter has 0 before the binary point. Also, denormalize
numbers always have exponent −127. These numbers exist to fill in the gaps between
the zero value and the smallest normalized positive floating-point number.

In a similar fashion, for 64 bit format, i.e., double-precision, a number is stored as

s|m1 . . .m11|f1 . . . f52, where s,m1, . . . ,m11, f1, . . . , f52 ∈ {0, 1}.

Since (m1 . . .m11)2 has 2048 possibilities, and if we exclude the case of all zeros and
the case of all one for special values, we are left with 2046 possibilities, and so the
offset y should be equal to 1023 in order to have an equal number of non-negative
and negative exponents. Hence, in double-precision normalized format a real number
is represented as

a = (−1)s(1.f1 . . . f52)2 × 2(m1...m11)2−1023. (3.4)
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Again, NaN, 0, ∞ and denormalized numbers reserve the slots (000 . . . 000)2 and
(111 . . . 111)2 for the exponent as described above.

Let us now consider looking at the smallest positive and largest finite normalized
numbers in both single-precision and double-precision format to give a sense of their
differences. In single-precision, the smallest normalized positive number is

0|00000001| 000 · · · 000︸ ︷︷ ︸
23

7→(1. 00 · · · 00︸ ︷︷ ︸
23

)2 × 21−127 = 2−126 ≈ 1.175× 10−38,
(3.5)

and the largest finite normalized positive number is

0|11111110| 111 · · · 111︸ ︷︷ ︸
23

7→(1. 111 · · · 111︸ ︷︷ ︸
23

)2 × 2254−127 = (2− 2−23)× 2127 ≈ 3.4× 1038.
(3.6)

Meanwhile the smallest normalized positive number in double-precision format is

0| 00 · · · 00︸ ︷︷ ︸
10

1| 00 · · · 00︸ ︷︷ ︸
52

7→(1. 00 · · · 00︸ ︷︷ ︸
52

)2 × 21−1023 = 2−1022 ≈ 2.225× 10−308,
(3.7)

while the largest finite normalized number in double-precision format is

0| 11 · · · 11︸ ︷︷ ︸
10

0| 11 · · · 11︸ ︷︷ ︸
52

7→(1. 11 · · · 11︸ ︷︷ ︸
52

)2 × 22046−1023 = (2− 2−52)× 21023 ≈ 1.798× 10308.
(3.8)

Definition 3.3. A real number which can be represented as the normalized floating-
point form (3.3) (resp. (3.4)) is called a machine number in the computer having
a word length of 32 (resp. 64) bits/binary digits.

In particular, a machine number can be represented precisely by the computer.
But this is not the case for most real numbers. If a real number x is not a machine
number, it will be approximately by a most accurate machine number, usually denoted
as fl(x).

3.3 Rounding errors

Consider a decimal x with m digits after the decimal point. For n < m, if a machine
only has n degrees of precision, i.e., it can only represent decimals with n digits after
the decimal point, then we have to obtain an approximation x̂ of x consisting of only
n decimal places. There are two ways to get an approximation:
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1. Rounding: If the (n + 1)th digit is 0, 1, 2, 3, or 4, then the nth digit is
unchanged and all following digits are discarded. If the (n + 1)th digit is 5,
6, 7, 8, or 9, then the nth digit is increased by one unit (carried leftwards if
necessary) and the remaining digits are discarded.

2. Chopping: Simply discard all digits beyond the nth digit.

Example 3.5. The following 7 digit numbers are rounded to 4 digits:

0.1735499 7→ 0.1735

0.9999500 7→ 1.000

0.4321609 7→ 0.4322.

If they are chopped to 4 digits then:

0.1735499 7→ 0.1735

0.9999500 7→ 0.9999

0.4321609 7→ 0.4321.

When we perform either rounding or chopping, an error is produced. The following
quantifies the relative error produced for each operation.

Lemma 3.1. Let x = a.a1a2 . . . an . . . be a decimal with a 6= 0 (i.e., |x| ≥ 1).
Denoting the rounded number xr with n digits after the decimal point and the chopped
number xc with n digits after the decimal point. Then, the following relative error
estimate holds

|x− xr|
|x|

≤ 1

2
× 10−n,

|x− xc|
|x|

≤ 10−n.

In particular the relative error for chopping is at most twice as large as the relative
error for rounding.

Proof. Consider the rounded number xr. Then if the (n+ 1)th digit of x is 0,1,2,3 or
4, then x = xr + ε for some ε < 0.5× 10−n. Otherwise, if the (n + 1)th digit of x is
5,6,7,8 or 9, then we can write xr = y + 10−n for some number y of the form

y = a.a1a2 . . . an00000 . . . ,

i.e., y agrees with x up to the nth digit and all other digits of y beyond the nth digit are
zero. Then, x = y+δ×10−n for some δ > 0.5. Thus x−xr = (1−δ)×10−n ≤ 0.5×10−n.
Since |x| ≥ 1 (otherwise a would be zero), this leads to the relative error

|x− xr|
|x|

≤ 1

2
× 10−n.
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Consider now the chopped number xc, which is obtained by discarding all digits after
the nth one. Then, x = xc + δ × 10−n for some 0 ≤ δ < 1. This yields the relative
error

|x− xc|
|x|

≤ |δ| × 10−n ≤ 10−n.

For binary numbers a similar notion of rounding and chopping exist:

1. Rounding: If the (n + 1)th digit is 0 then the nth digit is unchanged and all
following digits are discarded. If the (n + 1)th digit is 1, then the nth digit is
increased by one unit (carried leftwards if necessary) and the remaining digits
are discarded.

2. Chopping: Simply discard all digits beyond the nth digit.

More precisely, if x = (x0.x1x2 . . . xn . . . )2, then

xc = (x0.x1x2 . . . xn)2, and xr =

{
(x0.x1x2 . . . xn)2 if xn+1 = 0,

(x0.x1x2 . . . xn)2 + 2−n if xn+1 = 1.

Example 3.6. The number 3/5 = (0.1001100110011 . . . )2 = (0.1001)2 rounded to 5
digits is xr = (0.10011)2 and rounded to 4 digits is xr = (0.1010)2.

Lemma 3.2. Let x = (a.a1a2 . . . an . . . )2 be a binary number with a = 1. Denoting
the rounded number xr with n digits after the binary point and the chopped number xc
with n digits after the binary point. Then, the following relative error estimate holds

|x− xr|
|x|

≤ 2−(n+1),
|x− xc|
|x|

≤ 2−n.

Proof. The proof is similar to the one for decimals. For the rounded binary number
xr, if the (n + 1)th digit is 0, then x = xr + ε with ε < 2−(n+1). Otherwise, writing
xr = y+2−n where as before, y = (a.a1a2 . . . an000000 . . . )2, so that x = y+δ×2−(n+1)

for δ > 1. Then, x− xr = (1− δ)× 2−(n+1) ≤ 2−(n+1). These cases yield the relative
error estimate for xr. Similarly for the chopped binary number xc, we infer that
x = xc + δ × 2−n for some 0 ≤ δ < 1.

3.4 Machine precision

In a 32-bit representation, the restriction that the mantissa part occupies no more
than 23 bits means that the machine numbers have a limited precision of roughly 6
decimal places, since the least significant bit in the mantissa represents units of 2−23,
approximately 1.2×10−7 ≤ 10−6. Then numbers expressed with more than 6 decimal
digits will be approximated by machine numbers.
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Recalling (3.5), the smallest positive number that can be represented in 32-bit is
amin = 2−126, while the second smallest positive number that can be represented in
32-bit is:

amin,2 = (1. 00 . . . 00︸ ︷︷ ︸
22

1)2 × 2−126,

so that the maximum relative error that one can made in truncating (or rounding) a
number a between amin and amin,2 is:

∣∣∣∣amin − a
a

∣∣∣∣ ≤
(0. 00 . . . 00︸ ︷︷ ︸

22

1)2 × 2−126

1× 2−126
= 2−23 = 10−6.9,

where in the above we used

|amin − a| ≤ |amin − amin,2|,
1

|a|
≤ 1

|amin|
.

This means that the number of significant digits retained is roughly equal to 7 when
one truncates a very small number.

Similarly, recalling (3.6), the largest number amax that can be represented in 32-bit
is:

amax = (1. 11 . . . 1︸ ︷︷ ︸
23

)2 × 2127 = (2− 2−23)× 2127 ≈ 2128,

while the second largest number that can be represented in 32-bit is:

amax,2 = (1. 11 . . . 1︸ ︷︷ ︸
22

0)2 × 2127 = (2− 2−22)× 2127.

The difference between the two numbers is huge:

|amax − amax,2| = (0. 00 . . . 00︸ ︷︷ ︸
22

1)2 × 2127 = 2−23 × 2127 = 2103 ≈ 1031.

However, the maximum relative error that one can made in truncating (or rounding)
a number a between amax,2 and amax is:∣∣∣∣amax − a

a

∣∣∣∣ ≤ (0.00 . . . 001)2 × 2127

(1.11 . . . 110)2 × 2127
≤ 2−23 × 2127

(2− 2−22)× 2127
≤ 2−23 = 10−6.9,

where we used 2− 2−22 > 1. That again means that the number of significant digits
retained is roughly equal to 7 when one truncates a very large number.

In general, the number of significant digits retained when one truncates any num-
ber in 32-bit representation is always 7 (because we use 23 bits for the mantissa and
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2−23 = 10−6.9). The number 2−23 is called unit roundoff error or machine preci-
sion3, and usually denoted as εM , which also goes by the name machine epsilon.
Roughly speaking the machine precision is an upper bound on the relative error due
to rounding. We see that the unit roundoff error depends on the length of the man-
tissa only. In the 64-bit machines, we use 52 bits for the mantissa, and hence the
accuracy is within 2−52 = 10−15.6, i.e. about 16 digits of accuracy.

We may also introduce the machine epsilon in a slightly different manner. Suppose
we like to estimate the error involved in approximating a given positive real number
x by a nearby machine number in the 32-bit system. We assume that

x = q × 2m ,
1

2
≤ q < 1 , |m| ≤ 127,

where in the above we used the unbiased exponent for m.
The real number x will be approximated by the closest machine number. Write

x = (1.a1a2 . . . a23a24a25 . . .)2 × 2m,

where each as is either 0 or 1. One nearby machine number is obtained by simply
discarding the excess bits a24a25 . . .. The resulting number is

x− = (1.a1a2 . . . a23)2 × 2m.

Observe that x− lies to the left of x on the real line. Another nearby machine number
lies to the right of x, which is obtained by rounding up. That is, we drop the excess
bits as before, but increase the last remaining bit a23 by one unit. This number is

x+ = ((1.a1a2 . . . a23)2 + 2−23)2 × 2m.

The closer of x− or x+ is chosen to represent x in the computer. There are two
situations. If x is represented better by x−, then we have

|x− x−| ≤
1

2
|x+ − x−| =

1

2
× 2−23 × 2m = 2m−24.

In this case, the relative error is bounded as follows:∣∣∣∣x− x−x

∣∣∣∣ ≤ 2m−24

q × 2m
=

2−24

q
≤ 2−23.

Similarly, in the second case, we have the relative error is also bounded by 2−23.
In general, if x is a nonzero real number within the range of the machine, then,

the machine number x∗ closest to x satisfies the inequality∣∣∣∣x− x∗x

∣∣∣∣ ≤ 2−23.

The number 2−23 is called unit roundoff error or machine epsilon.

3Note that other people may also define 2−24 as the machine precision
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3.5 Overflow and underflow

From the definition of floating-point numbers, there are upper and lower limits for
the magnitudes of the numbers that can be represented. Any attempts to create
numbers

• that are too small, e.g. ±q × 2−c for c > 127 ⇒ underflow errors: the default
option is to set the number to zero and proceed/continue;

• that are too large, e.g. ±q × 2c for c > 127 ⇒ overflow errors: these generate
fatal errors on most computers, and computation will be halted.

Example 3.7. Consider evaluating the function f(x) = x10 for x near 0. With single
precision arithmetic, the smallest nonzero positive number is

a = 2−126,

and so f(x) is set to zero if

x10 < a ⇔ |x| < a1/10 ≈ 1.610× 10−4.

Since overflow is usually a fatal error that causes many systems to stop with an
error message, with proper scaling overflows can be eliminated at a cost of generating
harmless underflows.

Example 3.8. Consider the problem of computing

c =
√
a2 + b2, a = 1060, b = 1.

The computation may overflow while computing a2. The remedy is to re-express c in
the form

c = s

√(a
s

)2
+
(b
s

)2
,

where s is a suitable scaling factor, say

s = max{|a| , |b|} = 1060.

Then,

c = 1060

√
12 +

( 1

1060

)2
,

so that when (1/1060)2 is computed, it underflows and is set to zero. The computation
still goes forward and we contain c = 1060.
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3.6 Loss of significance

In general, the result of some operation of two floating-point number can not be
represented by a floating-point numbers of the same size. For example, the product
of two five-digit numbers (after the decimal point) will often require ten digits for its
result. Another example is

(2.0001× 106)× (9.0001× 102) = 18.00110001× 108.

Thus the result of a floating-point operation can be represented only approximately.

Let us look at a simple example. Suppose we are computing the difference 1 −
0.9999999 in six-digit decimal arithmetic. We first align the numbers:

1.0000000
− 0.9999999

Mathematically, we have

1.0000000
− 0.9999999

0.0000001

Normalizing the result to the correct answer, we get

0.100000× 10−6.

But the computer has only 6-digit decimal operation available now, so during the
alignment, it would round 0.9999999 to 1.00000 and thus this leads to

1.00000
− 1.00000

0.00000

which gives the result zero!

This phenomenon we see is called loss of significance error, which often occurs
when we take the difference between two nearly equal numbers. Consider another
example: evaluate the function

f(x) =
√
x+ 1−

√
x

at x = 100 to 6 significant digits4. We have
√

100 = 10.0000 (exact),
√

101 = 10.0499 (rounded),

where we round
√

101 correctly to 6 significant digits of accuracy. Then, we get
√

101−
√

100 = 0.0499000

4See https://en.wikipedia.org/wiki/Significant_figures for the definition.

30

https://en.wikipedia.org/wiki/Significant_figures


whereas the true value to 6 significant digits should be 0.0498756! In particular,
four digits of accuracy (since the approximate value 0.0499000 and the true value
0.0498756 differ in 4 digits) are lost during the evaluation of

√
101−

√
100.

Another example: evaluate

f(x) = log10(x+ 1)− log10(x)

at x = 9 to 5 significant digits. We see that

log10(9 + 1) = 1.0000 (exact), log10(9) = 0.95424 (rounded),

and so

f(9) = 0.045760

to 5 significant digits. But the true value is 0.045757 to 5 significant digits. Hence,
we have lost two significant digits of accuracy. In fact, if x is larger, this loss of
significance may become more severe!

For example, take the same function f(x) as above and evaluate at x = 999. Then,
to 5 significant digits,

log10(999 + 1) = log10(1000) = 3 (exact), log10(999) = 2.9995 (rounded),

which leads to the evaluation

f(999) = 0.00050000

to 5 significant digits. But the true value correct to 5 significant digits is 0.00043451,
so we have lost all significant digits in this computation.

This loss of accuracy is a by-product of

• the type of calculations involved in evaluating the function f(x);

• (mainly) the finite precision decimal arithmetic being used.

The overall theme is that when two nearly equal quantities are subtracted, this
leads to significant lost of accuracy. More often, the loss of significance can be subtle
and difficult to detect. However, loss of significance in single precision can be avoided
using double precision, as the number of bits in the mantissa is doubled. In other
cases, rewriting the mathematical formula is an alternative and can make a difference.
For example, writing

f(x) = log10

(x+ 1

x

)
= log10

(
1 +

1

x

)
and substituting x = 9, we obtain to 5 significant digits

f(x) = 0.046757

which agrees with the true value to 5 significant digits. Similarly, for x = 999

f(999) = log10(1.0010) = 0.00043407

and we have only lost 2 significant digits, which is a huge improvement.

31



Remark 3.3. Loss of significance can have real life implications5. One example is
the failure of intercepting of an incoming missile which killed 28 soldiers at Dhahran,
Saudi Arabia in 19916.

3.7 Error analysis

The basic problem is that not all real numbers can be exactly represented as machine
numbers, and during standard arithmetic operations such as +, −, ×, ÷, the usual
rules of arithmetic may no longer hold, i.e.,

a+ (b+ c) 6= (a+ b) + c

due to rounding. Given a real number x, let fl(x) be the floating point representation
of x, i.e., fl(x) is a machine representable number closest to x. By previous discussions,
we have ∣∣∣∣fl(x)− x

x

∣∣∣∣ ≤ εM =

{
2−23 for single precision,

2−52 for double precision.
(3.9)

Then, there exists ε = ε(x) such that

fl(x) = x(1 + ε) with |ε| ≤ εM . (3.10)

Assume that when 2 machine numbers are operated arithmetically, namely using
the operations +,−,×,÷, the operation is first correctly formed, then normalized,
rounded off and stored in a machine word. To make it clear, let � stand for any of
the four basic arithmetic operations. If x and y are machine numbers, then x� y is
correctly formed, and fl(x� y) is stored. If not, then fl(x)� fl(y) is correctly formed,
and fl(fl(x)� fl(y)) is stored.

Then, it is desirable to know how accurate is the value fl(x� y) or fl(fl(x)� fl(y))
compared to the true value x � y, or alternatively, what can we say regarding an
upper bound for the relative errors∣∣∣∣fl(x� y)− x� y

x� y

∣∣∣∣ and

∣∣∣∣fl(fl(x)� fl(y))− x� y
x� y

∣∣∣∣ .
The main idea is to use the relation (3.9). What we will perform in the following
examples is forward error analysis, which measures the differences between the
approximation fl(x� y) and the true value x� y.

Example 3.9 (Addition). Let x and y be two positive machine numbers, then

fl(x+ y) = [x+ y](1 + ε1) where |ε1| ≤ εM ,

5See https://www.student.cs.uwaterloo.ca/~se101/Float.pdf.
6See https://en.wikipedia.org/wiki/MIM-104_Patriot#Failure_at_Dhahran.
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and so the forward relative error is∣∣∣∣fl(x+ y)− (x+ y)

x+ y

∣∣∣∣ ≤ εM .

If x and y are not machine representable, then

fl(fl(x) + fl(y)) = [fl(x) + fl(y)](1 + ε1)

= [x(1 + ε2) + y(1 + ε3)](1 + ε1) where |εi| ≤ εM for i = 1, 2, 3

= [x+ y + ε2x+ ε3y](1 + ε1),

and so

|fl(fl(x) + fl(y))− (x+ y)| ≤ 2εM |x+ y| ,

since the products ε1ε2, ε1ε3 are smaller compared to ε1, ε2, and ε3, so that they most
likely will underflow and be set to zero. Hence, the forward relative error is bounded
by 2εM , and this tells us that when we add two positive non-machine numbers, the
relative error at most doubles.

Example 3.10 (Difference of squares). Consider evaluating r = a2 − b2 for two
machine numbers a and b. Let r̂ := fl(fl(a2)− fl(b2)), then

r̂ = [fl(a2)− fl(b2)](1 + ε1) = (a2(1 + ε2)− b2(1 + ε3)](1 + ε1),

with |εi| ≤ εM for i = 1, 2, 3. So

|r̂ − r| =
∣∣a2(ε1 + ε2 + ε1ε2)− b2(ε1 + ε3 + ε1ε3)

∣∣ ≤ 2εM(a2 + b2),

which implies that the forward relative error is∣∣∣∣(fl(a2)− fl(b2))− (a2 − b2)
a2 − b2

∣∣∣∣ ≤ 2εM
a2 + b2

a2 − b2
=: 2εMCa,b.

We see that if Ca,b = O(1), then the forward relative error is O(εM) and thus the
computation is accurate. However, if Ca,b = O(1/εM) (which can happen if a is close
to b), then the above estimate is not informative, as the forward relative error can be
of order O(1), rendering the computation useless for accuracy purposes.

Example 3.11 (Difference of squares - a modification). Instead of evaluating a2−b2,
we consider evaluating (a+ b)(a− b), which mathematically is the same, but behaves
rather differently. Then,

r̂ = fl(fl(a+ b)× fl(a− b)) = [fl(a+ b)× fl(a− b)](1 + ε1)

= [(a+ b)(1 + ε2)× (a− b)(1 + ε3)](1 + ε1)

= (a+ b)(a− b)(1 + ε1)(1 + ε2)(1 + ε3)

= r(1 + ε1)(1 + ε2)(1 + ε3),
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where |εi| ≤ εM for i = 1, 2, 3. In particular, we have that the forward relative error
is ∣∣∣∣ r̂ − rr

∣∣∣∣ ≤ (1 + εM)3 − 1 ≤ 3εM ,

and so the computation is always accurate regardless of the size of a and b.

Example 3.12 (Adding three numbers). Assume a, b, and c are positive machine
numbers, then as the rules of arithmetic may not hold, we have two ways to construct
the sum y = a+ b+ c:

The first way is to perform the summation of a and b, and then with c, leading to

ŷ1 := fl(fl(a+ b) + c) = [fl(a+ b) + c](1 + ε1) = [(a+ b)(1 + ε2) + c](1 + ε1)

= (a+ b+ c)
(

1 +
a+ b

a+ b+ c
ε2(1 + ε1) + ε1

)
,

and the second way is to perform the summation of b and c, and then with a, leading
to

ŷ2 = fl(a+ fl(b+ c)) = (a+ b+ c)
(

1 +
b+ c

a+ b+ c
ε2(1 + ε1) + ε1

)
.

We neglect a third way which is to perform the summation of a and c, and then with
b, as it leads to a similar relation. However, the important thing to note is that we
obtain the following relative errors for the two methods:∣∣∣∣ ŷ1 − yy

∣∣∣∣ ≤ a+ b

a+ b+ c
ε2 + ε1,

∣∣∣∣ ŷ2 − yy

∣∣∣∣ ≤ b+ c

a+ b+ c
ε2 + ε1.

Therefore, one obtains a smaller forward relative error if we sum the smaller numbers
first.

The forward error analysis is useful as it provides the accuracy of the approxima-
tion ŷ of an operation y = f(x) for some function f , but there are certain drawbacks:

• if the true value y is unknown, then it can be difficult to compute the forward
error.

• often forward error analysis gives a too pessimistic estimate on the accuracy of
the operation.

We now turn to backward error analysis, which is concerned with the question: in
the computation of the quantity y = f(x), suppose we have an approximate value ŷ.
Find δ such that ŷ = f(x + δ). In particular, we acknowledge that due to rounding
errors, the calculated result ŷ is not exactly correct, but it can be regarded as an
exact solution to a nearby problem with slightly perturbed data, i.e.,(

approximate arithmetic
applied to correct data

)
⇔
(

correct arithmetic
applied to approximate data

)
.
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Let δ be the value such that ŷ = f(x+ δ). Then, we define

|δ| as the absolute backward error,

|δ|
|x|

as the relative backward error if x 6= 0.

Example 3.13. Consider f(s) =
√
s. For y =

√
2 suppose we have the approximate

value ŷ = 1.4. Then, the absolute and relative forward errors are

|ŷ − y| ≈ 0.0142 . . . ,

∣∣∣∣ ŷ − yy
∣∣∣∣ ≈ 0.01005 . . . .

Since 1.4 =
√

1.96 we have that ŷ = 1.4 =
√

2 + δ with δ = −0.04. Hence, the
absolute and relative backward errors are

|δ| = 0.04,

∣∣∣∣ δx
∣∣∣∣ = 0.02.

Example 3.14. 7 Consider the evaluation of f(s) = s2 at a non-machine number x.
In the forward error analysis, we compute

ŷ = fl(fl(x)× fl(x)) = x2(1 + ε2)
2(1 + ε1)

for some |ε1| , |ε2| ≤ εM . Then, we see that

ŷ = x2(1 + 2ε2 + ε22 + ε1 + 2ε1ε2 + ε1ε
2
2) ⇒

∣∣∣∣ ŷ − x2x2

∣∣∣∣ ≤ 3εM ,

which means that the forward relative error is approximately tripled. In the backward
error analysis, we start from the relation

ŷ = x2(1 + 2ε2 + ε22 + ε1 + 2ε1ε2 + ε1ε
2
2).

Then, we can find δ with |δ| ≤ εM such that

ŷ = x2(1 + 2ε2 + ε22 + ε1 + 2ε1ε2 + ε1ε
2
2) = x2(1 + δ)2 = (x(1 + δ))2 = f(x(1 + δ)).

This result says that the error in squaring a non-machine number x is no worse than
accurately squaring a close approximation x(1 + δ).

In summary, the forward and backward error analysis are different viewpoints
describing the same computational process. The former informs us that performing
floating-point arithmetic causes loss of accuracy, while the latter suggests that this
should not be a concern since we have decide to use floating-point arithmetic in the
first place.

7This example is taken from http://people.ds.cam.ac.uk/nmm1/arithmetic/na1.pdf.

35

http://people.ds.cam.ac.uk/nmm1/arithmetic/na1.pdf


4 Solutions of linear systems of algebraic equa-

tions

4.1 Vector and matrix norms

The simplest norm we recall for vectors x = (x1, . . . , xn)T is the Euclidean norm
defined as

‖x‖ =
√
x21 + x22 + · · ·+ xnn.

This satisfies all the requirements to be a norm:

(i) ‖x‖ ≥ 0, and ‖x‖ = 0 if and only if x = 0.

(ii) ‖αx‖ = |α| · ‖x‖ for all α ∈ R.

(iii) (Triangle Inequality): ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

More general norms can be defined: for example the p-norm, for any p ≥ 1, is defined
as

‖x‖p =


(
|x1|p + |x2|p + · · ·+ |xn|p

)1/p
for 1 ≤ p <∞,

max1≤i≤n |xi| for p =∞.

The norm ‖ · ‖1 is also called the Manhanttan norm, while ‖ · ‖∞ is called the
supremum norm, while the Euclidean norm is just ‖ · ‖2. One can verify that
all ‖ · ‖p satisfies the three requirements to be a norm. We also have the following
inequalities

‖x‖∞ ≤ ‖x‖q ≤ ‖x‖p ≤ ‖x‖1 ≤ n‖x‖∞ ∀1 ≤ p ≤ q ≤ ∞,

which implies that all norms are equivalent.

For matrices, there are also notions of norms. The simplest matrix norm is to
view each matrix as a sequence of numbers, and then compute the Euclidean norm
of this sequence. The result is the Frobenius norm. More precisely, if A ∈ Rm×n

with (i, j)th entry aij, then the Frobenius norm of A is defined as

‖A‖F :=
( m∑
i=1

n∑
j=1

|aij|2
)1/2

.

However, as we will see later in the section for solving nonlinear systems, other types
of matrix norms may also be used. For example, there are norms that are induced
from a vector p-norm. The p-norm of a matrix is defined as

‖A‖p := max
‖x‖p=1

‖Ax‖p for 1 ≤ p ≤ ∞, p ∈ N. (4.1)

The most common types of p-norm we will encounter are p = 1, p = 2 and p =∞.
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Lemma 4.1.

‖A‖1 = max
1≤j≤n

m∑
i=1

|aij| = maximum column sum,

‖A‖2 =
√
λmax(ATA), where λmax is the largest eigenvalue of ATA,

‖A‖∞ = max
1≤i≤m

n∑
j=1

|aij| = maximum row sum.

Proof. We divide the proof into three parts.

1-norm. Let a1, . . . , an denote n columns of the matrix A, so that

A =

 | | · · · |
a1 a2 · · · an
| | · · · |

 .

Let ej denote the jth standard basis vector, then Aej = aj, and so ‖Aej‖1 = ‖aj‖1.
For any x ∈ Rn with ‖x‖1 = 1, we can express x as a linear combination of the
standard basis:

x =
n∑
i=1

αiei,

and due to ‖x‖1 = 1 we must have

n∑
i=1

|αi| = 1.

Suppose K is the index of the column of the matrix A with maximum 1-norm, i.e.,

‖aK‖1 ≥ ‖aj‖1 for any 1 ≤ j ≤ n.

Then, together with the identity

Ax =
n∑
j=1

αjAej =
n∑
j=1

αjaj,

we obtain

‖Ax‖1 ≤
n∑
j=1

‖αjaj‖1 ≤
n∑
j=1

|αj| ‖aj‖1 ≤ ‖aK‖1
n∑
j=1

|αj| = ‖aK‖1.

Taking maximum over all such x ∈ Rn with ‖x‖1 = 1 yields

‖A‖1 ≤ ‖aK‖1.

On the other hand, picking x = eK gives

‖aK‖1 = ‖AeK‖1 ≤ max
‖x‖1=1

‖Ax‖1 = ‖A‖1

gives the converse inequality. This shows the claim for ‖A‖1.
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∞-norm. Let x ∈ Rn be arbitrary with ‖x‖∞ = max1≤j≤n |xj| = 1. Then,

‖Ax‖∞ = max
1≤i≤m

∣∣∣∣∣
n∑
j=1

aijxj

∣∣∣∣∣ ≤ max
1≤i≤m

n∑
j=1

|aij| |xj| ≤ max
1≤i≤m

n∑
j=1

|aij| ,

and so

‖A‖∞ ≤ max
1≤i≤m

n∑
j=1

|aij| .

For the converse inequality, let aK denote the row for which the maximum row sum
is achieved, i.e.,

A =


−−− a1 −−−
−−− a2 −−−

...
...

...
−−− am −−−

 and
n∑
j=1

|aKj| ≥
n∑
j=1

|aij| for 1 ≤ i ≤ m.

We consider the vector y = (x1, . . . , xn)T with

yi = sign(aKj) if aKj 6= 0, yi = 1 if aKj = 0.

Then, ‖y‖∞ = 1 and

max
1≤i≤m

n∑
j=1

|aij| =
n∑
j=1

|aKj| = ‖Ay‖∞ ≤ max
‖x‖∞=1

‖Ax‖∞ = ‖A‖∞.

2-norm. For a matrix A ∈ Rm×n, the product B := ATA ∈ Rn×n is symmetric
and hence is Hermitian (self-adjoint). The eigenvalues of B are real-valued and non-
negative, since B is positive semi-definite:

x ·Bx = x · ATAx = (Ax) · (Ax) ≥ 0.

We denote these eigenvalues as

0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn.

Corresponding to these eigenvalues are n orthonormal (hence linearly independent)
eigenvectors u1, . . . , un. Let P be a matrix whose ith column in ui, i.e.,

P =

 | | · · · |
u1 u2 · · · un
| | · · · |

 .

Then, the orthonormality of {ui}ni=1 implies that P is invertible, and we also have

P−1BP = D = diag(λ1, . . . , λn).
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Since {u1, . . . , un} form a basis of Rn, any vector x ∈ Rn can be expressed as a linear
combination x =

∑n
i=1 αiui. Then,

ATAx = Bx =
n∑
i=1

αiBui =
n∑
i=1

αiλiui,

and so, due to the orthonormality of {ui}ni=1, we have

‖Ax‖22 = x · ATAx = x ·Bx =
n∑
i=1

|αi|2 λi ≤ λn

n∑
i=1

|αi|2 = λn‖x‖22.

Taking maximum over all x ∈ Rn with ‖x‖2 = 1 yields

‖A‖2 ≤
√
λn =

√
largest eigenvalue of ATA.

For the converse inequality, we consider x = un and compute that

‖Aun‖22 = un · ATAun = un ·Bun = |λn|2 .

Hence, √
λn = ‖Aun‖2 ≤ max

‖x‖2=1
‖Ax‖2 = ‖A‖2.

Definition 4.1. The spectrum of a square matrix A ∈ Rn×n is the set of all eigen-
values of A. The spectral radius of A is defined as

ρ(A) := max
1≤i≤n

|λi|. (4.2)

With this definition, sometimes ‖A‖2 is called the spectral norm.

Exercise. Show that

‖A‖2 ≤ ‖A‖F ≤
√
n‖A‖2.

Lemma 4.2. The matrix p-norm ‖A‖p defined in (4.1) satisfies all three requirements
of being a norm.

Proof. Let x be an arbitrary vector in Rn. Now, it is clear that Ax is a vector in Rm.
By virtue of the vector p-norm being a norm, we have

(i) ‖Ax‖p ≥ 0 and ‖Ax‖p = 0 if and only if Ax = 0.

(ii) ‖αAx‖p = |α| · ‖Ax‖p, for all α ∈ R.

(iii) ‖Ax+Bx‖p ≤ ‖Ax‖p + ‖Bx‖p.
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Then, we see that

‖A‖p = max
‖x‖p=1

‖Ax‖p ≥ 0,

‖αA‖p = max
‖x‖p=1

‖αAx‖p = max
‖x‖p=1

|α| · ‖Ax‖p = |α| · ‖A‖p.

Meanwhile, Ax = 0 for arbitrary x if and only if A = 0, and so

‖A‖p = 0 if and only if A = 0.

Lastly,

‖A+B‖p = max
‖x‖p=1

‖(A+B)x‖p ≤ max
‖x‖p=1

(‖Ax‖p + ‖Bx‖p) = ‖A‖p + ‖B‖p.

Lemma 4.3. For any A ∈ Rn×m and B ∈ Rm×q, it holds that

‖AB‖p ≤ ‖A‖p‖B‖p ∀1 ≤ p ≤ ∞, p ∈ N.

Proof. The key is to first show that

‖Ax‖p ≤ ‖A‖p‖x‖p.

This comes from the fact that if x ∈ Rn is a vector whose vector p-norm isn’t 1, we
can define y = x

‖x‖p . Then ‖y‖p = 1 and we have

‖Ay‖p =
1

‖x‖p
‖Ax‖p.

Taking the maximum over y is the same as taking the maximum over x, which yields

‖A‖p = max
x 6=0

‖Ax‖p
‖x‖p

⇒ ‖Ax‖p ≤ ‖A‖p‖x‖p.

Now, set y = Bx and using the above property gives

‖ABx‖p = ‖Ay‖p ≤ ‖A‖p‖y‖p = ‖A‖p‖Bx‖p ≤ ‖A‖p‖B‖p‖x‖p.

Taking over the maximum of all x such that ‖x‖p = 1 yields the result.

Exercise. Show that ‖AB‖F ≤ ‖A‖F‖B‖F for the Frobenius norm.
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4.2 Relative errors

Let x̃ be an approximation to x, then recall the relative error is defined as

|x− x̃|
|x|

.

One can similarly define the relative error of an approximate vector x̃ to x as

‖x− x̃‖
‖x‖

,

where ‖ · ‖ can be any of the vector p-norm.

Lemma 4.4. If the relative error of x̃ to x satisfies

‖x− x̃‖
‖x‖

≤ θ < 1,

then, the relative error of x to x̃ satisfies

‖x− x̃‖
‖x̃‖

≤ θ

1− θ
.

Proof. We easily see

‖x− x̃‖
‖x̃‖

=
‖x− x̃‖
‖x‖

‖x̃‖
‖x‖
≤ θ
‖x̃‖
‖x‖

.

Using ‖x− x̃‖ ≤ θ‖x‖, we derive by the (other) triangle inequality

‖x‖ − ‖x̃‖ ≤ | ‖x‖ − ‖x̃‖ | ≤ ‖x− x̃‖ ≤ θ‖x‖,

and so

(1− θ)‖x‖ ≤ ‖x̃‖ ⇒ ‖x‖
‖x̃‖
≤ 1

1− θ
.

This then gives

‖x− x̃‖
‖x̃‖

≤ θ
‖x‖
‖x̃‖
≤ θ

1− θ
.

Let us note that θ/(1 − θ) is not too different from θ if θ is small. This shows
that if the relative error of x̃ to x is small, so is the relative error of x to x̃, and we
may use any one of them to measure the relative error. In practice, it is easier to
compute and estimate

‖x− x̃‖
‖x̃‖

than the other, since it is usually complicated and difficult to have an accurate esti-
mate on the exact value of x. In fact our entire task is to find an accurate estimation
of the exact solution x.
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4.3 Sensitivity of linear systems

Before we give methods to solve linear systems of algebraic equations, let us first
discuss the issues of sensitivity. Consider solving the linear system

Ax = b.

But due to rounding errors, or observation data errors, the actual problem solved by
the computer is the perturbed system:

Ãx̃ = b.

The question is will x̃ be a good approximation to x? It is convenient to introduce
the perturbation equation

Ã = A+ E where E = Ã− A.

If A is non-singular, and E is not too large in the sense that

‖A−1E‖ < 1,

then Ã = A + E is also non-singular. Indeed, it suffices to show that for any x 6= 0,
we have (A+ E)x 6= 0. Since A is non-singular, we can express

Ãx = A(x+ A−1Ex).

Thus, (A+E)x 6= 0 if and only if x+A−1Ex 6= 0. Due to the hypothesis ‖A−1E‖ < 1,
we obtain

‖x+ A−1Ex‖ ≥ ‖x‖ − ‖A−1Ex‖ ≥ ‖x‖ − ‖A−1E‖‖x‖ > 0,

which shows that x+ A−1Ex 6= 0.
We now describe a fundamental perturbation theory.

Theorem 4.1. Let A be a non-singular matrix, and Ã = A+ E. If

Ax = b, Ãx̃ = b

with b 6= 0, then we have

‖x̃− x‖
‖x̃‖

≤ ‖A−1E‖ = ‖A−1Ã− I‖.

So if,

‖A−1E‖ < 1,

then Ã is non-singular with

‖x− x̃‖
‖x‖

≤ ‖A−1E‖
1− ‖A−1E‖

.
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Proof. To prove the first result, we use Ã = A+ E to see that

b = Ãx̃ = Ax̃+ Ex̃.

Since b = Ax, we have

Ax = Ax̃+ Ex̃ ⇒ x− x̃ = A−1Ex̃.

This implies

‖x− x̃‖ ≤ ‖A−1E‖‖x̃‖,

which is the first result. For the second result, using the previous lemma 4.4 with
θ = ‖A−1E‖ < 1, we know that

‖x̃− x‖
‖x‖

≤ θ

1− θ
.

The fact that Ã is non-singular comes from the argument immediately preceding the
theorem.

4.4 Condition number of a matrix

The relative error of the solution to the perturbed system Ãx̃ = b is

‖x̃− x‖
‖x‖

≤ ‖A−1E‖
1− ‖A−1E‖

,

but the right-hand side seems difficult to interpret. In the following we aim to derive
a more convenient relation. Using Lemma 4.3, we see that

‖A−1E‖ ≤ ‖A−1‖ ‖E‖ = ‖A−1‖ ‖A‖‖E‖
‖A‖

.

Defining

κ(A) = ‖A‖ ‖A−1‖ (= ‖A−1‖ ‖A‖),

we have

‖A−1E‖ ≤ κ(A)
‖E‖
‖A‖

⇒ ‖x̃− x‖
‖x‖

≤
κ(A)‖E‖‖A‖

1− κ(A)‖E‖‖A‖
.

If κ(A)‖E‖‖A‖ is small, then the fraction

c(E) :=
1

1− κ(A)‖E‖‖A‖
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is close to 1, and thus

‖x̃− x‖
‖x‖

≤ c(E)κ(A)
‖E‖
‖A‖

= c(E)κ(A)
‖Ã− A‖
‖A‖

. (4.3)

This gives us that the relative error of x̃ to the exact solution x can be controlled by
a factor of the relative error of the perturbed matrix Ã to the true matrix A.

Definition 4.2 (Condition number). The real number

κ(A) := ‖A‖ ‖A−1‖

is called the condition number of the matrix A.

Let ‖·‖ be an induced matrix norm. Due to the chain of inequalities and equalities

1 ≤ ‖I‖ = ‖AA−1‖ ≤ ‖A‖ ‖A−1‖ = κ(A),

we find that

the condition number κ(A) is always greater than or
equal to one.

This means that the condition number is always a magnification constant, and the
bound on the error is never diminished in passing from the matrix to the solution.

The condition number is an important quantity in numerical analysis and has
direct influence on the accuracy of the solution to the linear system Ax = b. Suppose
the matrix A is rounded to the matrix Ã on a computer with rounding unit εM
(machine accuracy), so that we have

ãij = aij + aijεij, |εij| ≤ εM .

Then, in any of the matrix p-norms we have

‖Ã− A‖ ≤ εM‖A‖.

Suppose we solve the perturbed system Ãx̃ = b without making any additional errors,
we should obtain a solution x̃ satisfying

‖x̃− x‖
‖x‖

≤ c(E)κ(A)
‖Ã− A‖
‖A‖

≤ εMκ(A)c(E).

If for instance, εM = 10−t and κ(A) = 10k, then the solution x̃ can have relative error
as large as 10k−t. This roughly justifies the following rule:

If κ(A) = 10k, one should expect to lose at least k digits
of accuracy in solving the system Ax = b.
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4.5 Simple solution of a linear system

Consider the n× n square system Ax = b. A natural way to solve the system seems
to be multiplying both sides of Ax = b by A−1 to get the solution

x = A−1b.

This suggests the following algorithm for solving Ax = b:

1. Compute C = A−1.

2. Compute x = Cb.

Unfortunately, unless A has a very simple structure this algorithm is very expen-
sive when the size of A is large, i.e., n is a large number, as computing A−1 is
extremely time-consuming, and more importantly unstable. It turns out that there
are more efficient algorithms for solving Ax = b, such as the LU factorization and
the Cholesky factorization, where the basic idea is to factorize A into a product
of matrices PQ such that

Ax = b ⇔ Py = b, Qx = y,

where it is faster and easier to invert P and Q.

4.6 Solutions of triangular systems

4.6.1 Forward-substitution algorithm

Consider solving the lower triangular system

Lx = b

where L is a lower triangular matrix of order n, i.e., lij = 0 for all i < j and

L =


l11 0 0 · · · 0
l21 l22 0 · · · 0
...

...
. . . . . .

...
ln1 ln2 ln3 · · · lnn


Writing Lx = b component-wise leads to

l11x1 = b1
l21x1 + l22x2 = b2

...
li1x1 + li2x2 + · · ·+ liixi = bi

...
ln1x1 + ln2x2 + · · ·+ lnixi + · · ·+ lnnxn = bn
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then we can solve the system as follows:

x1 = b1/l11
x2 = (b2 − l21x1)/l22

...

xi = (bi −
i−1∑
j=1

lijxj)/lii, i = 3, 4, . . . , n.

This algorithm is called the forward-substitution algorithm as we start with x1
and end with xn.

4.6.2 Backward-substitution algorithm

Using a similar idea, we can solve the following upper triangular system

Ux = b

where U is upper triangular of order n, i.e., uij = 0 for all i > j and

U =


u11 u12 u13 · · · u1n
0 u22 u23 · · · u2n
...

...
. . . . . .

...
0 0 0 · · · unn

 .

Writing the system Ux = b component-wise leads to

u11x1 + u12x2 + · · ·+ u1ixi + · · ·+ u1nxn = b1
u22x2 + · · ·+ u2ixi + · · ·+ u2nxn = b2

...
uiixi + · · ·+ uinxn = bi

...
unnxn = bn.

Then we can solve the system as follows:

xn = bn/unn
xn−1 = (bn−1 − un−1,nxn)/un−1,n−1

...

xi = (bi −
n∑

j=i+1

uijxj)/uii, i = n− 2, n− 3, . . . , 2, 1.

This algorithm is called the backward-substitution algorithm as we start with
xn and end with x1.
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4.6.3 Computational complexity

A good indication on whether a particular numerical method is expensive is the com-
putational complexity. All numerical algorithms can be decomposed into the basic
components of vector-vector, matrix-vector and matrix-matrix operations, which all
involve the basic operations (floating-point operations aka “flop”) of addition, sub-
traction, multiplication and division of two numbers (floating points). Note that this
is only a rough estimate of the complexity of the algorithms, and is not an accurate
predictor of the computational time on modern computers.

vector-vector operations. for x, y ∈ Rn:

• inner product x · y: 2n − 1 flops (or 2n if n is large) - n multiplications to get
{xiyi}ni=1 and n− 1 addition of two floating points.

• sum x+ y, scalar multiplication αx: n flops.

matrix-vector product. y = Ax with A ∈ Rm×n:

• m(2n − 1) flops (or 2mn if n is large) - think of computing m inner products
between the rows of A and the vector x.

matrix-matrix product C = AB with A ∈ Rm×n and B ∈ Rn×p:

• mp(2n− 1) flops (or 2mnp if n large).

The number of flops can decrease if matrices have a special structure or is sparse
(i.e., a large amount of entries in the matrix are zero). Let us consider the compu-
tational costs of solving linear systems Ax = b for the following cases of the matrix
A = (aij) ∈ Rn×n.

1. Diagonal matrices (aij = 0 if i 6= j): n flops as

x = (b1/a11, · · · , bn/ann)T .

2. Lower triangular matrices (aij = 0 if i < j), i.e., the forward-substitution
algorithm: When computing xi, we need to perform (i − 1) multiplications,
(i− 1) pairwise subtraction and one last multiplication, leading to 2i− 1 flops.
Hence, the total complexity is

∑n
i=1 2i− 1 = n2 flops.

3. Upper triangular matrices (aij = 0 if i > j), i.e., the backward-substitution
algorithm: n2 flops.
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4.7 Cholesky factorization

Definition 4.3. A matrix A ∈ Rn×n is said to be symmetric and positive definite
(SPD) if it satisfies

AT = A and xTAx > 0 ∀x 6= 0.

Lemma 4.5. Let A ∈ Rn×n be a SPD matrix. Then, A is invertible, and any eigen-
value of A is positive. Furthermore, if U ∈ Rm×n with m 6= n has linearly independent
columns, then UTU ∈ Rn×n is SPD.

Proof. Suppose for a contradiction there is some x 6= 0 such that Ax = 0, then

xTAx = 0,

which contradicts positive definiteness. Hence A is invertible.
Suppose λ is an eigenvalue, then there exists a corresponding eigenvector x 6= 0

such that

Ax = λx.

Then we have

0 < xTAx = λxTx = λ‖x‖2.

Since x 6= 0, we have ‖x‖2 > 0 and so λ > 0.
Let U ∈ Rm×n be a matrix with linearly independent columns. Then, the only

solution to Ux = 0 is x = 0. However,

xTUTUx = ‖Ux‖2,

and so for a non-zero vector x ∈ Rn, xTUTUx > 0, which implies positive definiteness.
For symmetry it is clear that (UTU)T = UTU .

The following procedure, known as the Cholesky factorization, splits a SPD
matrix A into UTU where U is an upper triangular matrix. Let us write for constants
α and u11, vectors a and r, and submatrices A11 and U11:

A =

(
α aT

a A11

)
, U =

(
u11 rT

0 U11

)
,

then

A = UTU ⇔
(
α aT

a A11

)
=

(
u11 0
r UT

11

)(
u11 rT

0 U11

)
.

Comparing with both sides of the equation, we obtain

1. α = u211
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2. aT = u11r
T

3. A11 = r ⊗ r + UT
11U11

or equivalently, we can write

1. u11 =
√
α (take only the positive square root).

2. rT = aT/u11.

3. UT
11U11 = A11 − r ⊗ r =: Â11.

To continue, we observe that step 3 is the Cholesky factorization of Â11 if Â11 is SPD.
We check this now. By definition, Â11 = A11 − r ⊗ r is symmetric, and so it suffices
to show that Â11 is positive definite. Let xT = (x1, x̃

T ) for x1 ∈ R and x̃ ∈ Rn−1,
then

xT
(
α aT

a A11

)
x = αx21 + 2x1(a

T x̃) + x̃TA11x̃

= αx21 + 2x1(a
T x̃) +

1

α
(aT x̃)2 + x̃T Â11x̃

= α(x1 + (aT x̃)/α)2 + x̃T Â11x̃.

For any non-zero x̃, choose x1 = −(aT x̃)/α, so that

x̃T Â11x̃ = xT
(
α aT

a A11

)
x > 0.

This yields the positive definiteness of Â11. Then, we can repeat the above procedure
for the submatrix Â11. In fact the Cholesky factorization proceeds in n steps (for a
n× n matrix A), with each step filtering out one row of the matrix A:

(1) At the first step, the first row of U is computed and the (n − 1) × (n − 1)
submatrix A11 in the right bottom corner is modified;

(2) At the 2nd step, the second row of U is computed and the (n − 2) × (n − 2)
submatrix in the right bottom corner is modified.

(n) The procedure continues until the n-th step, or until nothing is left in the right
bottom corner.

Theorem 4.2. A matrix A is SPD if and only if it has a Cholesky factorization
(UTU or LLT ).

Proof. If A is SPD, then the above procedure gives a Cholesky factorization. Con-
versely, if A = UTU , where U is a nonsingular upper triangular matrix, let y = Ux,
then

xTAx = xTUTUx = (Ux)T (Ux) = yTy ≥ 0

with equality if and only if y = 0, i.e, when x = 0. Hence, A is positive definite. It is
easy to see that AT = (UTU)T = UTU = A and so A is symmetric.
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Theorem 4.3. Any two Cholesky factorization of the same matrix A differ by the
sign of their columns.

Proof. Let A = UT
1 U1 = UT

2 U2 be two Cholesky factorization with upper triangular
matrices U1 and U2. Then, it holds that

I = U−T1 UT
2 U2U

−1
1 = (U2U

−1
1 )T (U2U

−1
1 ).

Hence,

U2U
−1
1 = (U2U

−1
1 )−T .

Since U1 is an upper triangular matrix, its inverse U−11 is also an upper triangular
matrix, and thus the product U2U

−1
1 is also upper triangular. However, the right-

hand side (U2U
−1
1 )−T is lower triangular. In order for the above equation to hold,

both sides must be simultaneously upper and lower triangular, i.e., both sides are
diagonal matrices. Hence, U2U

−1
1 =: D is a diagonal matrix and we have

I = (U2U
−1
1 )T (U2U

−1
1 ) = DTD = D2,

and so D must be a diagonal matrix with entries ±1 on its main diagonal. Then,
using that U2 = DU1 we see that the two Cholesky factors U1 and U2 differ by signs
of the columns.

4.7.1 Computational cost of the Cholesky factorization

Let us summarize the Cholesky factorization in code: we use the notation U {k,
j:n} to denote all the entries {Uk,i}ni=j. The Cholesky factorization of a SPD matrix
A ∈ Rn×n into UTU for upper triangular U can be expressed as follows

1 Set U = A:

2 for k = 1 to n:

3 U_{k,k:n} = U_{k,k:n}/sqrt(U_{k,k});

4 for j = k+1 to n:

5 U_{j,j:n} = U_{j,j:n} - U_{k,j:n} U_{k,j} / U_{k,k};

6 end

7 end

Let us look at the innermost loop on line 5, for a fixed j ∈ {k+ 1, . . . , n} we perform
1 division, n − j + 1 multiplications and n − j + 1 subtractions. Since j runs from
k + 1 to n, the cost for evaluating the loop from line 4 to line 6 is

• n− k divisions,

• ((n+ 1)(n− k)−
∑n

j=k+1 j) = 1
2
(n− k)(n− k + 1) multiplications,

• ((n+ 1)(n− k)−
∑n

j=k+1 j) = 1
2
(n− k)(n− k + 1) subtractions,
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where we used

n∑
j=k+1

n− j + 1 = (n+ 1)(n− k)−
n∑

j=k+1

j − (n+ 1)(n− k)−
n∑
j=1

j +
k∑
j=1

j

=
1

2
(n2 + n− 2kn− k + k2) =

1

2
(n− k)(n− k + 1).

A short calculation with the basic facts

n∑
k=1

k =
1

2
n(n+ 1),

n∑
k=1

k2 =
1

6
n(n+ 1)(2n+ 1)

shows that

n∑
k=1

(n− k)(n− k + 1) =
n∑
k=1

(n2 + n− 2kn− k + k2) =
1

3
(n3 − n).

Then, looping over k = 1, . . . , n implies the number of flops we perform for subpro-
gram coded in line 2, 4, 5, 6, 7 is

n∑
k=1

[(n− k) + (n− k)(n− k + 1)] =
n2

2
− n

2
+

1

3
(n3 − n). (4.4)

Meanwhile, for fixed k ∈ {1, . . . , n}, in line 2 we perform

• n− k + 1 divisions (discounting the computation of the square root)

and so for the subprogram coded in line 2, 3, 7, the number of flops we perform is

n∑
k=1

n− k + 1 =
1

2
(n2 + n). (4.5)

Adding (4.4) and (4.5) shows that the total computational complexity of the Cholesky
factorization is

n2 +
1

3
(n3 − n) ≈ n3

3
for large n.

Example 4.1. Consider a 2× 2 SPD matrix

A =

(
a11 a12
a12 a22

)
.

Set uij = aij, then for k = 1 and for j from 2 to 2, we perform

u11 7→ u11/
√
u11,

u12 7→ u12/
√
u11,

u22 7→ u22 −
u12u12
u11

.
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This yields

U =

(√
a11

a12√
a11

a12√
a11

a22 − a212
a11

)
Then for k = 2 we do not have an inner loop for j, and so we perform

u22 7→
u22√
u22

,

which leads to

U =

√a11 a12√
a11

a12√
a11

(
a22 − a212

a11

)1/2
.


For k = 1 we performed 1 multiplication each for updating u11 and u12, and 1 multi-
plication, 1 division and 1 subtraction to update u22. Then for k = 2, we perform 1
division for updating u22. In total this is 6 flops to compute the Cholesky factorization
of a SPD matrix A ∈ R2×2.

4.7.2 Examples

Example 4.2. Find the Cholesky factorization of the following matrix

A =

 3 −1 1
−1 3 0
1 0 3

 . (4.6)

In the following, the symbol ∗ means we do not care about the value at the correspond-
ing entry.

1. We have u11 =
√

3, rT = 1√
3
(−1, 1). Update the 1st row and the submatrix at

the right bottom corner:
√

3 − 1√
3

1√
3

∗ 3− 1
3

0 + 1
3

∗ 1
3

3− 1
3

 =


√

3 − 1√
3

1√
3

∗ 8
3

1
3

∗ 1
3

8
3


2. The matrix Â11 is given as

Â11 =

(
8
3

1
3

∗ 8
3

)
.

Then, u22 =
√

8
3
, r = 1

3
/
√

8
3

= 1√
24

= 1
2
√
6
. Updating the 2nd row and the

submatrix at the right bottom corner leads to

Â11 →

(√
8
3

1
2
√
6

∗ 63
24

)
,
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leading to 
√

3 − 1√
3

1√
3

∗ 8
3

1
3

∗ 1
3

8
3

 →


√

3 − 1√
3

1√
3

∗ 2
√
2√
3

1
2
√
6

∗ ∗ 63
24


3. Update the 3rd row and the submatrix at the right bottom corner:

√
3 − 1√

3
1√
3

∗ 2
√
2√
3

1
2
√
6

∗ ∗ 63
24

 →


√

3 − 1√
3

1√
3

∗ 2
√
2√
3

1
2
√
6

∗ ∗
√

63
24

 .

This gives

U =


√

3 − 1√
3

1√
3

0 2
√
2√
3

1
2
√
6

0 0
√

63
24

 . (4.7)

Example 4.3. Find the Cholesky factorization of the following matrix4 1
2

1
1
2

17
16

1
4

1 1
4

33
64

 .

1. Set u11 = 2, rT = (1
4
, 1
2
) and compute for

Â11 =

(
1 1

8

∗ 17
64

)
.

Update the 1st row and the submatrix at the right bottom corner:4 1
2

1
1
2

17
16

1
4

1 1
4

33
64

 →

2 1
4

1
2

∗ 1 1
8

∗ 1
8

17
64


2. Update the 2nd row and the submatrix at the right bottom corner:(

1 1
8

1
8

17
64

)
→

(
1 1

8

∗ 1
4

)
3. Update the third row and the submatrix at the right bottom corner:(

1
4

)
→

(
1
2

)
this gives

U =

2 1
4

1
2

0 1 1
8

0 0 1
2

 .
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4.8 LU factorization and Gaussian elimination

For SPD matrices we can appeal to the Cholesky factorization, but they occur rarely
in applications of mathematics. The next method we discuss is the LU factorization,
and as the name suggests we factorize A into a product of a lower triangular matrix
L and an upper triangular matrix U . This process can be derived from the more
familiar Gaussian elimination that transforms a matrix A into an upper triangular
matrix U .

A key concept in Gaussian elimination is the notion of elementary row/column
operators. These are given as

(R1) Row switching: row ri can be switched with row rj.

(R2) Row multiplication: row ri can be multiplied by a nonzero scalar α 6= 0.

(R3) Row addition: row ri can be added with a scalar multiple of row rj.

The elementary column operations are analogously defined. It turns out that these
row/column operations are associated to so-called elementary matrices. For example,

Ti,j =



1
. . .

0 1
. . .

1 0
. . .

1


is the matrix representing row switching ri ↔ rj, where the (i, j)th and (j, i)th entry
is 1. In particular, the matrix product Ti,jA is produced from A by switching rows i
and j. Meanwhile, the matrix

Di(α) =



1
. . .

1
α

1
. . .

1
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represents row multiplication with scalar α 6= 0, and

Li,j(α) =



1
. . .

1
. . .

α 1
. . .

1


represents adding α times row i to row j. The α value occurs at the (j, i)th entry.
Notice Li,j(α) is always lower triangular if i < j.

Exercise. Show that T−1i,j = Ti,j, Di(α)−1 = Di(1/α) and Li,j(α)−1 = Li,j(−α).

Example 4.4. Consider the following 2× 2 system:

Ax ≡
(

2 4
4 11

) (
x1
x2

)
=

(
2
1

)
≡ b. (4.8)

Eliminating x1 in the 2nd equation requires us to add row 1 multiplied by -2 to row
2, leading to

L1,2(−2)A ≡
(

1 0
−2 1

) (
2 4
4 11

)
=

(
2 4
0 3

)
≡ U.

Then, the inverse L1,2(−2)−1 is given as L1,2(2) =: L, which is lower triangular, and
so

A =

(
2 4
4 11

)
=

(
1 0
2 1

) (
2 4
0 3

)
≡ LU. (4.9)

This gives a LU factorization of A. Then, solving the system

Ax = b

is equivalent to solving the system

LUx = b,

which can be done as follows:

Lc = b, Ux = c.

Applying this process to equation (4.8), we have

Lc = b ⇐⇒
(

1 0
2 1

) (
c1
c2

)
=

(
2
1

)
,
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which gives (
c1
c2

)
=

(
2
−3

)
.

Then

Ux = c ⇐⇒
(

2 4
0 3

) (
x1
x2

)
=

(
2
−3

)
,

which gives the solution of equation (4.8):(
x1
x2

)
=

(
3
−1

)
.

Example 4.5. Consider the following 3× 3 system:

Ax ≡

1 1 1
3 6 4
1 2 1

 x1x2
x3

 =

 0
2
−1/3

 ≡ b. (4.10)

Eliminating x1 in the 2nd equation requires us to add row 1 multiplied by -3 to row
2, i.e., multiply with L1,2(−3), and eliminating x1 in the 3rd equation requires us to
add row 1 multiplied by -1 to row 3, i.e., multiply with L1,3(−1), leading to

L1,3(−1)L1,2(−3)A ≡

 1 0 0
−3 1 0
−1 0 1

 1 1 1
3 6 4
1 2 1

 1 1 1
0 3 1
0 1 0

 ≡ U1.

Now eliminating x2 in the 3rd equation requires adding row 2 multiplied by −1/3 to
row 3, i.e., multiplying with L2,3(−1/3),

L2,3(−1/3)L1,3(−1)L1,2(−3)A

≡

1 0 0
0 1 0
0 −1/3 1

  1 0 0
−3 1 0
−1 0 1

 1 1 1
3 6 4
1 2 1

 1 1 1
0 3 1
0 0 −1/3

 ≡ U.

Hence,

A =

1 1 1
3 6 4
1 2 1

 =

1 0 0
3 1 0
1 0 1

 1 0 0
0 1 0
0 1/3 1

 1 1 1
0 3 1
0 0 −1/3


=

1 0 0
3 1 0
1 1/3 1

 1 1 1
0 3 1
0 0 −1/3

 ≡ LU.

This completes a LU factorization of A. Then,

Ax = b ⇐⇒ LUx = b,
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which can be done as follows:

Lc = b, Ux = c.

Applying this process to equation (4.10), we have

Lc = b ⇐⇒

1 0 0
3 1 0
1 1/3 1

 c1c2
c3

 =

 0
2
−1/3

 ,

which gives c1c2
c3

 =

 0
2
−1

 .

Then

Ux = c ⇐⇒

1 1 1
0 3 1
0 0 −1/3

 x1x2
x3

 =

 0
2
−1

 ,

which gives the solution of equation (4.10):x1x2
x3

 =

−8/3
−1/3

3

 .

For general n× n systems, we can apply the previous LU factorization that only
involves the row operation Li,j(α). Therefore, we use the notation Lk for k =
1, 2, . . . , where each Lk is a lower triangular matrix representing a particular operation
Li,j(α). The goal of the Gaussian elimination for a n×n matrix is to find a sequence
of row operations, such that

Ln−1Ln−2 · · ·L1A = U,

where U is upper triangular. Setting L = L−11 L−12 · · ·L−1n−1, which is lower triangular
automatically gives the LU decomposition of A.

Definition 4.4 (Unit triangular matrix). Let B ∈ Rn×n be a lower (resp. upper)
triangular matrix. We say that B is a unit triangular matrix if the entries on the
main diagonal of B are 1, i.e., Bii = 1 for i = 1, . . . , n.

Exercise. Show that if L is a unit lower triangular matrix, then its inverse L−1 is
also a unit lower triangular matrix.
If L1 and L2 are both unit lower triangular matrices, then L1L2 is also unit lower
triangular.
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Remark 4.1. The lower triangular matrix L in the LU decomposition of a matrix A
is always a unit triangular matrix, i.e., Lii = 1 for i = 1, . . . , n, this is due to the fact
that products of unit lower triangular matrices is again unit lower triangular, and the
matrices L1, . . . , LN are by nature unit lower triangular.

The procedure for a general n×n matrix can be summarized as follows: for the kth
row, k = 1, . . . , n, and any row i with i > k, we perform elementary row operations
so that for any j > k,

row k :
row i :

(
ãkk ãkj
ãik ãij

)
→
(
ãkk ãkj
0 ãij − ãik

ãkk
ãkj

)
This is equivalent to multiplying A with the elementary matrix Lk of the form

row k :
row i :

(
1 0
− ãik
ãkk

1

)
.

Example 4.6. Solve the following system by Gaussian elimination
6 −2 2 4
12 −8 6 10
3 −13 9 3
−6 4 1 −18



x1
x2
x3
x4

 =


12
34
27
−38

 .

Let

A1 = A =


6 −2 2 4
12 −8 6 10
3 −13 9 3
−6 4 1 −18

 ,

then we have

L1 =


1 0 0 0
−2 1 0 0
−1

2
0 1 0

1 0 0 1

 .

This gives

A2 = L1A1 =


6 −2 2 4
0 −4 2 2
0 −12 8 1
0 2 3 −14

 .

Looking at the second row of A2, we know

L2 =


1 0 0 0
0 1 0 0
0 −3 1 0
0 1

2
0 1

 ,

58



which yields

A3 = L2A2 =


6 −2 2 4
0 −4 2 2
0 0 2 −5
0 0 4 −13

 ,

Further, checking the third row of A3, we get

L3 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 −2 1

 ,

which helps us find

A4 = L3A3 =


6 −2 2 4
0 −4 2 2
0 0 2 5
0 0 0 −3

 .

Now, we know

U = A4 = L3L2L1A.

This implies

A = L−11 L−12 L−13 U

=


1 0 0 0
2 1 0 0
1
2

0 1 0
−1 0 0 1




1 0 0 0
0 1 0 0
0 3 1 0
0 −1

2
0 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 2 1




6 −2 2 4
0 −4 2 2
0 0 2 −5
0 0 0 −3



=


1 0 0 0
2 1 0 0
1
2

3 1 0
−1 −1

2
2 1




6 −2 2 4
0 −4 2 2
0 0 2 −5
0 0 0 −3



=


6 −2 2 4
12 −8 6 10
3 −13 9 3
−6 4 1 −18

 .

4.8.1 Complexity of LU factorization

In this section we compute the complexity of the LU factorization. Looking the the
first column of the matrix A, we perform row operations rj 7→ rj − a1j

a11
r1 for j =

2, . . . , n. Each of these row operations requires n multiplications and n subtractions.
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Since we perform this for n − 1 rows the total cost for eliminating all entries in the
first column below a11 is 2n(n− 1).

In a similar fashion, to remove all entries in the second column below a22, we
perform row operations rj 7→ rj − a2j

a22
r2 for j = 3, . . . , n. Each of these operations

costs n− 1 multiplications and n− 1 subtractions performed for n− 2 rows, leading
to a total cost of 2(n− 1)(n− 2).

By induction, we obtain a total cost to transform A into upper triangular form of

n∑
i=1

2(n− i)(n− i+ 1) =︸︷︷︸
j=n−i

n−1∑
j=0

2j(j + 1) =
n∑
j=0

2j2 + 2j

=
2

3
(n3 − n) ≈ n3 for large n.

This is roughly twice the computation complexity of the Cholesky algorithm, which
is to be expected since we do not have the advantage of symmetry any more for general
matrices.

4.8.2 Issues with LU factorization

Although the LU factorization is intuitively simple to understand, there are several
technical issues that prevents its application to general matrices.

Non-uniqueness. For the matrix

A =

(
0 0
1 2

)
,

consider the LU factorization

A =

(
a 0
b c

)(
1 d
0 1

)
⇒ a = 0, b = 1, d+ c = 2.

This means that for any pair (c, d) ∈ R2 such that c+d = 2, we have a LU factorization
of A, and so this shows that not every matrix has a unique LU factorization. However,
if the matrix is invertible, then the LU factorization, when it exists, is unique.

Theorem 4.4. If A is an invertible matrix with an LU decomposition. Then, the
decomposition is unique.

Proof. Let A = L1U1 = L2U2 be two LU decompositions of an invertible matrix A.
Since det(A) 6= 0 and by properties of the determinant:

det(L1)det(U1) = det(L2)det(U2),

the determinants of L1, U1, L2 and U2 are non-zero. In particular, L2 and U1 are
invertible and so

L−12 L1 = U2U
−1
1 .
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The inverse of a lower (resp. upper) triangular matrix is again lower (resp. upper)
triangular, and the product of two lower (resp. upper) triangular matrices is lower
(resp. upper) triangular. Hence, L−12 L1 is lower triangular and U2U

−1
1 is upper

triangular. In order for the above identity to hold we must have L−12 L1 and U2U
−1
1

to be the same diagonal matrix. Since L1 and L2 are unit triangular, it holds that
L−12 L1 must be the identity matrix, and so L1 = L2 and consequently U1 = U2.

Non-existence. For the matrix

A =

(
0 1
1 0

)
,

it is easy to see that A is non-singular. Suppose we write

A =

(
l11 0
l21 l22

)(
u11 u12
0 u22

)
and so we need

l11u11 = 0, l11u12 = 1, l21u11 = 1, l21u12 + l22u22 = 0.

We immediately see a contradiction as the equations l11u11 = 0 implies either one
must be zero, but then no choice of u12 or l21 can then fulfill l11u12 = 1 or l21u11 = 1.
A further problem arises when one simply applies the Gaussian elimination procedure
to A. Since the first entry a11 is zero, we cannot apply the third row operation as we
would be dividing by zero!

Below we give a criterion that ensures a matrix A has a LU factorization.

Theorem 4.5. Let A be an n× n matrix, and for k = 1, . . . , n− 1, let A(k) denote
the k × k submatrix of A consisting of the first k rows and k columns of A. If
det(A(k)) 6= 0 for k = 1, . . . , n− 1, then A has a LU factorization.

Proof. Since A(1) = (a11) is invertible, a11 6= 0. Then we can use the row operation
Li,j(α) to reduce the matrix A into the form

A′ =


a11 a12 · · · a1n
0 a′22 · · · a′2n
...

...
...

0 a′n2 · · · a′nn


Now, the submatrix A′(2) is invertible, since its determinant is the same as the
determinant of A(2), and so a′22 is non-zero and allows us to reduce the matrix A′

further to

A′′ =


a11 a12 a13 · · · a1n
0 a′22 a′23 · · · a′2n
0 0 a′′33 · · · a′′3n
...

...
...

...
...

0 0 a′′n3 · · · a′′nn

 .
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Continued in this manner allows us to reduce A into an upper triangular matrix U ,
also called row echelon form, where the first n− 1 diagonal entries of U are non-zero.
Furthermore, in the process of the reduction we pick up unit lower triangular matrices
L1, . . . , LN−1, such that LN−1 · · ·L1A = U . Setting L := L−11 · · ·L−1N−1 yields a unit
lower triangular matrix, and thus A has an LU decomposition.

Backward instability. Consider for a small constant ε� 1 the matrix

A =

1 1 1
2 2 + ε 5
4 6 8

 .

Then, the LU factorization will result in

L =

1 0 0
2 1 0
4 2

ε
1

 , U =

1 1 1
0 ε 3
0 0 4− 6

ε

 .

Suppose we want to solve Ax = (1, 0, 0)T by solving Ly = (1, 0, 0)T and then Ux = y.
If ε is on the order of machine accuracy, then 4 in the entry 4− 6

ε
in U is insignificant.

Therefore, we have approximated matrices

Ũ =

1 1 1
0 ε 3
0 0 −6

ε

 , L̃ = L,

leading to

L̃Ũ =

1 1 1
2 2 + ε 5
4 6 4

 6= A.

The product is significantly different from the original matrix A. In particular, we
get the solution x̃ for the L̃Ũ factorization

x̃ =

11
2
− 2

3
ε

−2
2
3
ε− 2

3

 ≈
 11

2

−2
−2

3

 .

However, if we use the exact factorization LU of A, we get the exact answer

x =

 4ε−7
2ε−3
2

2ε−3
−2 ε−1

2ε−3

 ≈
 7

3
ε
−2

3

−2
3

 .

Therefore, even if L̃ and Ũ are close to L and U , the product L̃Ũ is not close to
LU = A, and the computed solution x̃ is worthless.

These issues then motivate the following subsections on modifications of the LU
factorization.
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4.9 LDU factorization

As shown previously, the LU factorization of a matrix may not be unique, unless the
matrix is invertible. Next we show how to ensure a unique factorization. Suppose we
have obtained a factorization of A:

A = L̃Ũ ,

where L̃ is unit lower triangular and Ũ = (uij)1≤i,j≤n is upper triangular. Let

D = diag(Ũ) =


u11 0 · · · 0
0 u22 · · · 0
...

...
. . .

...
0 0 · · · unn

 ,

denote a diagonal matrix with consisting of the diagonal entries of Ũ , and set

U = D−1Ũ , Uij =


1 if i = j,

0 if i > j,
uij
uii

if i < j,

which yields a unit upper triangular matrix U . Then we can further factorize A as
follows:

A = LDU

where L and U are unit lower and upper triangular matrices, respectively, and D
is a diagonal matrix. In particular, we have shown the following existence theorem,
which is an immediate consequence of Theorem 4.5.

Theorem 4.6. Let A be an n×n matrix, and for k = 1, . . . , n−1, let A(k) denote the
k×k submatrix of A consisting of the first k rows and k columns of A. If det(A(k)) 6= 0
for k = 1, . . . , n−1, then A has a LDU factorization with unit triangular lower (resp.
upper) matrix L (resp. U).

The advantage of the LDU factorization is its uniqueness.

Theorem 4.7. Let {(Li, Di, Ui)}i=1,2 denote two LDU factorizations of a matrix A.
Then, L1 = L2, D1 = D2 and U1 = U2.

Proof. From the assumptions, we have

L−12 L1D1 = D2U2U
−1
1 .

Let L ≡ L−12 L1 and U ≡ U2U
−1
1 . Then we have

LD1 = D2U. (4.11)
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It is not hard to check that the product of two unit lower (resp. upper) triangular
matrices is again a unit lower (resp. upper) triangular matrix. Hence, L and U are
unit lower and upper triangular matrices, respectively. Writing the matrices in (4.11)
out, we have

LD1 =

(D1)11 0 0

∗ . . . 0
∗ ∗ (D1)nn

 =

(D2)11 ∗ ∗
0

. . . ∗
0 0 (D2)nn

 = D2U,

where ∗ are supposedly nonzero entries. Comparing the entries in the left and the
right hand sides, we can conclude that (D1)ii = (D2)ii for all i, i.e. D1 = D2.
Moreover all these ∗ should be equal to zero. In particular, that would mean that
both U and L are nothing but just the identity matrix I. Since I = L ≡ L−12 L1, we
have L1 = L2, and similarly, U1 = U2.

Example 4.7. Find the LDU factorization of

A =

(
2 4
4 11

)
.

From (4.9), the LU factorization of A is

A =

(
2 4
4 11

)
=

(
1 0
2 1

) (
2 4
0 3

)
≡ L̃ Ũ .

Extract the diagonal entries of Ũ and compose the diagonal matrix

D =

(
2 0
0 3

)
,

whilst modifying the upper triangular matrix Ũ to

U =

(
1 2
0 1

)
,

we see that with L̃ = L:

LDU =

(
1 0
2 1

) (
2 0
0 3

) (
1 2
0 1

)
= A.

We now derive the Cholesky factorization from the LDU factorization. Let A be
a SPD matrix with a factorization given as

A = LDU

where L (resp. U) is an unit lower (resp. upper) triangular matrix and D is a diagonal
matrix. Since A is symmetric,

LDU = A = AT = UTDLT .
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As LT is an unit upper triangular matrix, by the uniqueness of the factorization, we
have that L = UT and hence

A = UTDU.

Next we claim that all the entries of the diagonal matrix D are positive. Let {ei}ni=1

be the canonical basis vectors and set xi = U−1ei. Then, the positive definiteness of
A implies that

0 < xTAx = eTi (U−1)TUTDUU−1ei = eTi Dei = Dii.

Hence, Dii > 0 for i = 1, . . . , n. This in turn allows us to define the matrix square
root D1/2 of D by setting D1/2 to be a diagonal matrix with entries

√
Dii, i.e.,

D1/2 =


√
D11 0 · · · 0
0

√
D22 · · · 0

...
...

. . .
...

0 0 · · ·
√
Dnn

 .

Then, we see that

A = UTD1/2D1/2U = (D1/2U)T (D1/2U) =: ŨT Ũ ,

where Ũ = D1/2U is an upper triangular matrix.

4.10 Partial pivoting

Pivoting is the action in Gaussian elimination (or any matrix algorithm) that marks
an element (the pivot element) in a certain row and convert all elements above or
below the pivot element into zeros. Recall at Step k of the LU factorization:

k
i

(
ãkk ãkj
ãik ãij

)
→

(
ãkk ãkj
0 ãij − ãik

ãkk
ãkj

)
.

In this setting the coefficient ãkk is known as the pivot. From this we see that the
elimination process can continue only when the diagonal entry ãkk, which is the pivot
element at Step k, is nonzero, as it is used as a divisor. If no diagonals are zero in all
steps, the LU factorization can carry on till completion. However, if the diagonal
entry is zero at a certain step, the algorithm cannot continue.

One example is the matrix (
0 1
1 0

)
,

which does not possess a LU factorization. Another example is(
0 1
0 0

)
=

(
1 0
0 1

)(
0 1
0 0

)
,
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which admits a LU factorization, but is a singular matrix. In both cases the algorithm
for Gaussian elimination fails. But sometimes, even if the diagonal entry is not zero,
but very small, one encounters trouble. For example, considering solving the following
simple system: (

0.0001 0.5
0.4 −0.3

)(
x1
x2

)
=

(
0.5
0.1

)
. (4.12)

Let us assume that the computer (or calculator) has only 4 digits of accuracy. Then
the true solution is

x1 = 0.9999, x2 = 0.9998.

Using Gaussian Elimination to eliminate the first column, we have(
1 0

− 0.4
0.0001

1

)(
0.0001 0.5

0.4 −0.3

)(
x1
x2

)
=

(
1 0

− 0.4
0.0001

1

)(
0.5
0.1

)
.

Simplifying it, we get, (
0.0001 0.5

0 −2000

)(
x1
x2

)
=

(
0.5
−2000

)
. (4.13)

Notice that the (2, 2)-entry is obtained by:

− 0.4

0.0001
· 0.5− 0.3 = −2000.3 ≈ 2000.

We see that the information of a22 = −0.3 in (4.12) is completely wiped out by the
elimination. It is as if the original matrix in (4.12) starts out with a22 = 0, one will
get the same matrix as in (4.13) after the elimination.

Solving the upper-triangular system (4.13), we have

x2 = 1, x1 =
0.5− 0.5x2

0.0001
= 0.

We see that the solution, especially x1, is completely wrong. Thus, if there are small
pivots (i.e., the pivot element is small in magnitude), such as the (1,1)-entry 0.0001
in the current example, then Gaussian Elimination may give very inaccurate results.

The remedy is to use partial pivoting. Before performing Gaussian elimination
in

k
i

(
ãkk ãkj
ãik ãij

)
→

(
ãkk ãkj
0 ãij − ãik

ãkk
ãkj

)
we permute the rows from row k onwards so that the largest entry in magnitude
in the column becomes the pivot.
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Considering system (4.12) again. Using partial pivoting, i.e., we permute the
largest entry, which is 0.4, in the first column to the first row:(

0.4 −0.3
0.0001 0.5

)(
x1
x2

)
=

(
0.1
0.5

)
. (4.14)

Notice that we have to do it for every row when doing the permutation, as well as
the right-hand side. Then the Gaussian elimination of (4.14) becomes(

1 0
−0.0001

0.4
1

)(
0.4 −0.3

0.0001 0.5

)(
x1
x2

)
=

(
1 0

−0.0001
0.4

1

)(
0.1
0.5

)
.

Now simplifying it, we have(
0.4 −0.3
0 0.5001

)(
x1
x2

)
=

(
0.1

0.5000

)
.

Hence the solution is:

x2 = 0.9998, x1 =
0.1 + 0.3x2

0.4
= 0.9999.

We see that the solution is accurate up to the specified precision of 4 digits.

4.10.1 Full/Complete pivoting

It is known by experience that partial pivoting is sufficient for all practical problems,
and is sufficient to adequately reduce round-off errors. But mathematicians have
found examples where partial pivoting fails8. In those cases, one has to use full
pivoting (sometimes also known as complete pivoting) to ensure correctness of
the solutions. Full pivoting means that one permute rows and columns to bring the
largest entry in absolute value in the entire submatrix that remains to be row reduced
to the pivoting position. In our case above, we will be solving:(

0.5 0.0001
−0.3 0.4

)(
x2
x1

)
=

(
0.5
0.1

)
.

Unfortunately, the computations can become very difficult if one uses full pivoting.
Furthermore, the improvement in numerical stability is typically outweighted by its
reduced efficiency for all but the smallest matrices, and the increase in computation
complexity as the maximal element has to be searched for. Most commercial software
(like Matlab) only uses partial pivoting9.

8See L.V. Foster, Gaussian elimination with partial pivoting can fail in practice, SIAM J. Matrix
Anal. Appl. (1994) 15:1354–1362

9In Matlab, given a matrix A, to see how partial pivoting and the LU factorization are done step
by step, use rrefmovie(A).
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4.10.2 LU factorization with partial pivoting

In the last subsection we saw that when the diagonal entry is too small at certain
stage of the LU factorization, it may cause some serious problem if one continues with
the factorization. In this case, we should take some special strategy before continuing
the factorization. The following pivoting is one of such strategies:

At the kth stage of the LU factorization, suppose the matrix A becomes Ak =
(a

(k)
ij ). Then, determine an index pk for which |a(k)pk,k| is largest among all |a(k)jk | for

(k ≤ j ≤ n), and interchange rows k and pk before proceeding the next step of the
factorization.

With the pivoting, the LU factorization process takes the form:

U = Ln−1Pn−1 · · ·L2P2L1P1A (4.15)

where Pk is exactly the elementary matrix Tk,pk from Section 4.8 that interchanges
row k and row pk. We mention that it is entirely possible that at certain steps no
pivoting is necessary, and in those situations Pk is simply the identity matrix.

Example 4.8. Solve the following systems using the LU factorization with pivoting:
−1 1 0 −3
1 0 3 1
0 1 −1 −1
3 0 1 2



x1
x2
x3
x4

 =


4
0
3
1


It can be done in the following (n− 1) = 3 steps.

Step 1. Permutate the rows 1 and 4 using T1,4:
3 0 1 2
1 0 3 1
0 1 −1 −1
−1 1 0 −3



x1
x2
x3
x4

 =


1
0
3
4

 .

Then, do one step of the standard LU factorization:
3 0 1 2
0 0 3− 1

3
1− 2

3

0 1 −1 −1
0 1 1

3
−3 + 2

3



x1
x2
x3
x4

 =


1
−1

3

3
4 + 1

3


Step 2. Permute rows 2 and 3 using T2,3:

3 0 1 2
0 1 −1 −1
0 0 8

3
1
3

0 1 1
3
−7

3



x1
x2
x3
x4

 =


1
3
−1

3
13
3

 .
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Then, do one step of the standard LU factorization:
3 0 1 2
0 1 −1 −1
0 0 8

3
1
3

0 0 4
3
−4

3



x1
x2
x3
x4

 =


1
3
−1

3
4
3

 .

Step 3. There is no need to do permutation, and so do one step of the standard LU
factorization: 

3 0 1 2
0 1 −1 −1
0 0 8

3
1
3

0 0 0 −1
6
− 4

3



x1
x2
x3
x4

 =


1
3
−1

3
4
3

+ 1
6

 .

This gives the solution:

x =


1
2
0
−1

 .

It is interesting to write the above Gaussian elimination process into matrix-forms.
We can do as follows. Let

A =


−1 1 0 −3
1 0 3 1
0 1 −1 −1
3 0 1 2

 .

Step 1. Permute rows 1 and 4 using P1 := T1,4:

T1,4A =


3 0 1 2
1 0 3 1
0 1 −1 −1
−1 1 0 −3

 .

Then do one step of the standard LU factorization:

L1(T1,4A) =


3 0 1 2
0 0 8

3
1
3

0 1 −1 −1
0 1 1

3
−7

3

 , L1 =


1 0 0 0
−1

3
1 0 0

0 0 1 0
1
3

0 0 1

 .
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Step 2. Permute rows 2 and 3 using P2 := T2,3:

T2,3(L1T1,4A) =


3 0 1 2
0 1 −1 −1
0 0 8

3
1
3

0 1 1
3
−7

3

 .

Then do one step of the standard LU factorization:

L2(T2,3L1T1,4A) =


3 0 1 2
0 1 −1 −1
0 0 8

3
1
3

0 0 4
3
−4

3

 , L2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 −1 0 1

 .

Step 3. . No need for permutation, i.e., P3 := I. Do one step of the standard LU
factorization:

L3(L2T2,3L1T1,4A) =


3 0 1 2
0 1 −1 −1
0 0 8

3
1
3

0 0 0 −9
6

 ≡ U, L3 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1

2
1

 .

This gives the desired LU factorization with partial pivoting:

A = T−11,4L
−1
1 T−12,3L

−1
2 L−13 U

=


−1

3
0 0 1

1
3

1 0 0
0 0 1 0
1 0 0 0

T2,3


1 0 0 0
0 1 0 0
0 0 1 0
0 1 1

2
1

 U

=


−1

3
0 0 1

1
3

1 0 0
0 0 1 0
1 0 0 0




1 0 0 0
0 0 1 0
0 1 0 0
0 1 1

2
1

 U

=


−1

3
1 1

2
1

1
3

0 1 0
0 1 0 0
1 0 0 0




3 0 1 2
0 1 −1 −1
0 0 8

3
1
3

0 0 0 −9
6

 = L′ U.

Note that in the above factorization, the matrix

L′ := T−11,4L
−1
1 T−12,3L

−1
2 L−13

is not a lower triangular matrix. However, observe that the matrix

P := P3 P2 P1 = I T2,3 T1,4
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is a permutation matrix exchanging row 1 with row 4, and row 2 with row 3. Then,
one can check that

P−1 = P = P T ,

and so when we compute the product PL′ we obtain

PL′ =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0



−1

3
1 1

2
1

1
3

0 1 0
0 1 0 0
1 0 0 0

 =


1 0 0 0
0 1 0 0
1
3

0 1 0
−1

3
1 1

2
1

 =: L,

which is a lower triangular matrix. Therefore, we find that

PA = PL′U = LU,

and the LU factorization with partial pivoting for a matrix A actually gives the LU
factorization (without pivoting) of the permuted matrix PA = P3P2P1A.

More generally, from the formula (4.15) we can write

U = Ln−1 × Pn−1Ln−2P−1n−1 × Pn−1Pn−2Ln−3P−1n−2P
−1
n−1 × · · ·

· · · × (Pn−1 · · ·P2)L1(P
−1
n−1 · · ·P−12 )× (Pn−1Pn−2 · · ·P2P1)A.

We define P := Pn−1 · · ·P1,

L̃n−1 := Ln−1, L̃n−2 := Pn−1Ln−2P
−1
n−1,

L̃n−k :=
(
Pn−1 · · ·Pn−k+1

)
Ln−k

(
P−1n−1 · · ·P−1n−k+1

)
,

and

L := L̃−11 L̃−12 · · · L̃−1n−1

so that (4.15) becomes

PA = LU.

Note that P is the permutation matrix summarising all of the interchanging of rows,
while one can verify that L̃k for each 1 ≤ k ≤ n− 1 are unit lower triangular, and so
L is also unit lower triangular.

4.11 General non-square linear systems

Up to now, all the methods that we have studied for solving the linear system

Ax = b (4.16)

apply only when the coefficient A ∈ Rn×n is a square matrix. But in many applica-
tions, we are also encountered with non-square matrices A ∈ Rm×n with m 6= n. In
this section we shall discuss how to solve such non-square systems.
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4.11.1 Overdetermined systems

Assume that A is an m×n matrix, with m > n. Clearly the system (4.16) is unlikely
to have a solution as the number of equations is larger than the number of unknowns.
This is also called the overdetermined case. Suppose for the moment that (4.16)
has a solution, and writing A column-wise as

A =

 | | · · · |
a1 a2 · · · an

| | · · · |

 ,

we can express (4.16) as

Rm 3 b = x1a1 + x2a2 + · · ·+ xnan,

where note that each ai is a vector in Rm. This shows that

The system (4.16) has a solution only when b lies in the subspace
spanned by the column vectors of A.

Next we shall study the more general case when b does not lie in the subspace
spanned by the column vectors of A. In this case the system (4.16) does not have
a solution. Since the error ex = Ax − b is never zero, in physical or engineering
applications, it is often acceptable for us to find some vector x∗ that minimize the
error in a certain sense, i.e.,

‖Ax∗ − b‖ ≤ ‖Ax− b‖ for all y ∈ Rn.

If we take ‖ ·‖ = ‖ ·‖2 as the 2-norm, then such a solution is called the least-squares
solution. Namely,

x∗ = argminx∈Rn‖Ax− b‖22 = argminx∈Rn

m∑
i=1

( n∑
j=1

aijxj − bi
)2
, (4.17)

where we recall that

‖Ax− b‖22 =
m∑
i=1

((Ax− b)i)2, (Ax− b)i =
n∑
j=1

aijxj − bi

Let us assume that the columns of A are linearly independent. Then it is easy to
check that ATA is symmetric and positive definite, and so ATA is also invertible. In
order to find x∗, we define

f(x) = ‖Ax− b‖22, (4.18)

which is a non-negative function defined on Rn. Then, if x∗ is a minimizer of f(x),
necessary it satisfies for any y ∈ Rn

d

dt
f(x∗ + ty)

∣∣∣
t=0

= 0.
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Let us now compute the above derivative:

d

dt
f(x∗ + ty) =

d

dt

m∑
i=1

(
bi −

n∑
j=1

aij(x∗,j + tyj)
)2

=
m∑
i=1

2
( n∑
j=1

aij(x∗,j + tyj)− bi
) n∑
j=1

aijyj

= 2
m∑
i=1

(A(x∗ + ty)− b)i(Ay)i = 2(A(x∗ + ty)− b) · Ay,

so that

d

dt
f(x∗ + ty)

∣∣∣
t=0

= 2(Ax∗ − b) · Ay = 0.

Now, using the property that

Ax · Ay = (ATA)x · y for A ∈ Rm×n, x, y ∈ Rn,

we infer that x∗ must satisfy the equation

AT (Ax∗ − b) · y = 0 for any y ∈ Rn.

This is only possible for arbitrary vectors y ∈ Rn if x∗ fulfills the normal equation:

ATAx∗ = AT b. (4.19)

In particular, our best approximation x∗ to an acceptable solution to the linear system
(4.16) is given as

x∗ = (ATA)−1AT b

if (ATA) is invertible.

Example 4.9. Consider the overdetermined system

2x = 6

3x = 6

where in matrix form we define

A =

(
2
3

)
, b =

(
6
6

)
.

Notice that there is no solution to the problem Ax = b for x ∈ R, since the first
equation gives x1 = 3 and the second equation gives x2 = 2. Is there a compromise
between the two? We compute the normal equation to get

x∗ = (ATA)−1AT b =
30

13
.
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Observe that

‖Ax1 − b‖2 = ‖(0, 3)‖2 = 3,

‖Ax2 − b‖2 = ‖(−2, 0)‖2 = 2,

‖Ax∗ − b‖2 = ‖(−48/13, 12/13)‖2 = 1.664100,

and so x∗ has the smaller error when compared to x1 and x2.

4.11.2 Underdetermined systems

In the case where m < n, i.e., there are more unknowns than equations, the system
Ax = b is said to be underdetermined. There is a possibility that many (even
infinitely many) approximate solutions exist to the minimization problem

min 7→ f(x) = ‖Ax− b‖22.

Then, it is common to seek the approximate solution with the minimum norm (typi-
cally the 2-norm), which we denote by x∗, so that

x∗ = argminx∈Rn with Ax=b‖x‖22. (4.20)

In contrast to the overdetermined case, we minimize over a subset of Rn, namely the
set Σ := {x ∈ Rn : Ax = b} of solutions to the problem Ax = b. However, the
mathematics become more difficult when minimizing over this subspace Σ compared
to minimizing over the whole space Rn. In order to derive what equations x∗ must
satisfy, we introduce the Lagrangian L : Rn × Rm → R:

L(x, µ) := ‖x‖22 + µT (b− Ax) =
n∑
i=1

|xi|2 +
m∑
j=1

µj

(
bj −

n∑
k=1

ajkxk

)
,

where µ ∈ Rm is the Lagrange multiplier for the constraint Ax = b in (4.20). The
role of the Lagrange multiplier is to relax our minimization problem from the subset
Σ := {x ∈ Rn : Ax = b} to the whole space Rn. Notice, that if x∗ is a solution
to (4.20), then Ax∗ = b and ‖x∗‖ ≤ ‖x‖ for any other solution x ∈ Σ, and thus L
achieves its minimum at x∗ for any vector µ. Hence, the partial derivatives of L with
respect to x and µ must vanish at x∗. We compute

∂L

∂µj

∣∣∣∣
x=x∗

= (b− Ax∗)j for 1 ≤ j ≤ m,

∂L

∂xi

∣∣∣∣
x=x∗

= 2x∗i − (ATµ)i for 1 ≤ i ≤ n.

Setting the partial derivatives to zero gives

b = Ax∗, x∗ =
1

2
ATµ ⇒ b =

1

2
AATµ,
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and if (AAT ) is invertible we find that

µ = 2(AAT )−1b,

and so

x∗ =
1

2
ATµ = AT (AAT )−1b.

Example 4.10. Consider the equation

2x1 + 3x2 = 5 ⇔
(
2 3

)(x1
x2

)
= 5,

with A =
(
2 3

)
∈ R2×1 and b = 5 ∈ R. Notice that there are an infinite number of

solutions. In particular for any t ∈ R, the pair (t, 1
3
(5− 2t)) is a solution. Hence, we

shall pick the solution x∗ with the smallest 2-norm. Computing for x∗ gives

x∗ =

(
10/13
15/13

)
,

and one can check that

‖(t, 1
3
(5− 2t))‖2 =

1

3

√
(3t2 − 20t+ 25)

attains its minimum value at t = 10
13

, and so x∗ has the smallest 2-norm amongst all
possible solutions to the problem.
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5 Systems of nonlinear equations

5.1 Newton’s method for systems

For n ∈ N, we consider solving the nonlinear system

F (x) =


f1(x1, . . . , xn)
f2(x1, . . . , xn)

...
fn(x1, . . . , xn)

 = 0
¯
∈ Rn,

where x = (x1, . . . , xn). We recall the Jacobian matrix DF (x) is given as

DF (x) =


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn

 ,

which is the generalization of the derivative f ′(x) to higher dimensions. Then, if we
invoke the form for Newton’s method in the case n = 1, we would write

xk+1 = xk −
F (xk)

DF (xk)
.

To be more precise, 1
DF (xk)

should be the inverse Jacobian matrix, which then leads
to Newton’s method:

For k = 0, 1, 2, . . ., do the following

1. Compute dk by solving

DF (xk)dk = −F (xk).

2. Update xk+1 by

xk+1 = xk + dk.

Example 5.1. Consider solving the nonlinear system

f1(x1, x2) = 2x1 + x1x2 − 1 = 0,

f2(x1, x2) = 2x2 − x1x2 + 1 = 0,

with Newton’s method for the initial guess

x0 =

(
0
0

)
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We first compute

DF (x) =

(
2 + x2 x1
−x2 2− x1

)
.

For the first iteration

F (x0) =

(
−1
1

)
, DF (x0)

(
2 0
0 2

)
.

Therefore,

x1 =

(
0
0

)
−
(

2 0
0 2

)−1(−1
1

)
=

(
1/2
−1/2

)
.

For the second iteration:

F (x1) =

(
−1/4
1/4

)
, DF (x1) =

(
3/2 1/2
1/2 3/2

)
.

Therefore,

x2 =

(
1/2
−1/2

)
−
(

3/2 1/2
1/2 3/2

)−1(−1/4
1/4

)
=

(
3/4
−3/4

)
.

It can be verified that

x3 =

(
0.875
−0.875

)
, x4 =

(
0.9325
−0.9325

)
,

and clearly the sequence (xk) converges to the limit x∗ = (1,−1)T .

Definition 5.1. A sequence of vectors (xk) converges with order p > 1 to x∗ ∈ Rn if
there exists a constant C > 0 such that

‖xk+1 − x∗‖ ≤ C‖xk − x∗‖p for all k.

If p = 1 and C < 1, then we say (xk) converges to x∗ linearly.

Think about why we need C ∈ (0, 1) for the case p = 1.

Lemma 5.1 (Banach lemma). Let A,B ∈ Rn×n be matrices such that ‖I−BA‖ < 1,
i.e., B is almost an inverse for A. Then, both A and B are invertible with

‖A−1‖ ≤ ‖B‖
1− ‖I −BA‖

, ‖B−1‖ ≤ ‖A‖
1− ‖I −BA‖

.
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Proof. For C ∈ Rn×n, if ‖C‖ < 1 then I − C is invertible. Indeed, suppose for a
contradiction, I−C is singular. Then, I−C has an eigenvector z with corresponding
eigenvalue λ = 0. Moreover,

Cz = (I − (I − C))z = z,

and so z is an eigenvector for C with corresponding eigenvalue λ = 1. Hence,

‖Cz‖
‖z‖

= 1 ≤ sup
y

‖Cy‖
‖y‖

= ‖C‖,

which contradicts the assumption.
Since I − C is invertible, a short calculation shows that

(I − C)−1 = I + C + C2 + C3 + · · · ,

which is also known as the Neumann series. Hence, if ‖I − BA‖ < 1, we know
BA = I − (I −BA) is invertible, and so both A and B are invertible. Indeed, we can
write

A−1 = (BA)−1B = (I − (I −BA))−1B = (I + (I −BA) + (I −BA)2 + · · · )B,

which implies

‖A−1‖ ≤ ‖B‖
1− ‖I −BA‖

.

The same argument also applies for the computation of B−1.

For the convergence analysis, we use the notation

Bδ(x) = {y ∈ Rn; ‖y − x‖ < δ}

as the ball centered at x with radius δ. Then we have the following result.

Lemma 5.2. Suppose there is a solution x∗ to F (x) = 0 and the Jacobian matrix
DF (x∗) is invertible. Furthermore, assume there is a region Ω ⊂ Rn with x∗ ∈ Ω
such that the Jacobian is Lipschitz continuous, i.e.,

‖DF (x)−DF (y)‖ ≤ γ‖x− y‖ (5.1)

for some γ > 0 and for all x,y ∈ Ω. Then, there exists δ > 0 such that for all
z ∈ Bδ(x

∗) the following properties hold:

‖DF (x)‖ ≤ 2‖DF (x∗)‖, (5.2a)

‖DF (x)−1‖ ≤ 2‖DF (x∗)−1‖. (5.2b)
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Proof. Let δ be small enough such that Bδ(x
∗) ⊂ Ω. For all x ∈ Bδ(x

∗) the condition
(5.1) implies that we have

‖DF (x)‖ ≤ ‖DF (x∗)‖+ ‖DF (x)−DF (x∗)‖
≤ ‖DF (x∗)‖+ γ‖x− x∗‖ ≤ ‖DF (x∗)‖+ γδ,

which implies (5.2a) once we choose δ sufficiently small so that γδ ≤ ‖DF (x∗)‖. For
the next result (5.2b), notice that

‖I −DF (x∗)−1DF (x)‖ = ‖DF (x∗)−1(DF (x∗)−DF (x))‖
≤ ‖DF (x∗)−1‖γ‖x∗ − x‖

≤ γδ‖DF (x∗)−1‖ < 1

2
,

if we choose δ < 1
2γ‖DF (x∗)−1‖ . Then, setting A = DF (x) and B = DF (x∗)−1 in the

Banach Lemma (Lemma 5.1), we get

‖DF (x)−1‖ ≤ ‖DF (x∗)−1‖
1− ‖I −DF (x∗)−1DF (x)‖

≤ 2‖DF (x∗)−1‖.

Theorem 5.1 (Quadratic convergence of Newton’s method). Suppose there is a solu-
tion x∗ to F (x) = 0 and the Jacobian matrix satisfies (5.1) and DF (x∗) is invertible.
Then, there exist constants K > 0 and δ > 0 such that for any x0 ∈ Bδ(x

∗), the
sequence {xn} generated by the Newton’s method satisfies xn ∈ Bδ(x

∗), and

‖xn+1 − x∗‖ ≤ K‖xn − x∗‖2 , n = 0, 1, 2, · · · .

So Newton’s method converges quadratically.

Proof. By the fundamental theorem of calculus, we have

F (y) = F (x) +

∫ 1

0

DF (x + t(y − x))(y − x) dt.

Using the definition of Newton’s method

xk+1 − x∗

= xk − x∗ −DF (x∗)−1F (xk)

= DF (xk)
−1
∫ 1

0

DF (xk)(xk − x∗) dt−DF (xk)
−1F (xk)

= DF (xk)
−1
∫ 1

0

(DF (xk)(xk − x∗)− F (x∗)︸ ︷︷ ︸
=0

−DF (x∗ + t(xk − x∗))(xk − x∗)) dt

= DF (xk)
−1
∫ 1

0

(DF (xk)−DF (x∗ + t(xk − x∗)))(xk − x∗) dt.
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Then, with (5.2a) and (5.2b) we get

‖xk+1 − x∗‖ ≤ 2‖DF (x∗)−1‖γ
∫ 1

0

‖(1− t)(xk − x∗)‖‖xk − x∗‖ dt

≤ 2γ‖DF (x∗)−1‖‖xk − x∗‖2
∫ 1

0

(1 + t) dt ≤ K‖xk − x∗‖2.

5.2 Broyden’s method

For scalar nonlinear equations f(x) = 0, the computation of the derivative f ′(xk) at
iterate xk may not be possible in some applications. Similarly, in Newton’s method
for systems of nonlinear equations, the computation and inversion of the Jacobian
matrix DF (xk) at each iteration can be unfeasible. This motivates replacing DF (xk)
with a matrix Ak that is simpler to compute, leading to the following Quasi-Newton
method:

For k = 0, 1, 2, . . . , do the following

1. Compute dk by solving

Akdk = −F (xk).

2. Update xk+1 by

xk+1 = xk + dk.

3. Update Ak to Ak+1 according to some rules.

By imposing the following properties for Ak, we arrive at Broyden’s method, which
is the topic of this section:

1. (Secant condition) Ak(xk − xk−1) = F (xk)− F (xk−1);

2. (Rank-one update) Ak = Ak−1 + pk ⊗ dk−1 for some vector pk ∈ Rn and
dk−1 = −A−1k−1F (xk−1);

3. (Orthogonal property) If y · (xk − xk−1) = 0, then Aky = Ak−1y.

In the above ⊗ is the vector tensor product, and for any two vectors u and v, the
matrix u⊗ v is defined as

u⊗ v =


u1v1 u1v2 · · · u1vn
u2v1 u2v2 · · · u2vn

...
...

. . .
...

unv1 unv2 · · · unvn

 .
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Since each column of u ⊗ v is a constant multiple of the vector u, we see that that
u⊗ v has rank one. Furthermore, the following formula will be useful:

(u⊗ v)w = (v ·w)u.

Let us now briefly give some reasoning for the above conditions.

1. Ideally, Ak should approximate the Jacobian DF (xk). In the case n = 1, the
Secant condition can be seen as

Ak =
F (xk)− F (xk−1)

xk − xk−1
≈ F ′(xk),

but for the case n > 1, the above expression does not make sense, and so it is
replaced by the Secant condition.

2. We wish for a simple formula to update Ak−1 to Ak using information such as dk
available at the kth iteration. One simple way to do so is to consider a rank-one
update, so that we only need to compute the vector pk in order to obtain the
new approximation matrix.

3. While the Secant condition gives information about Ak in the direction dk =
xk − xk−1, and we expect that along the direction dk, the matrix Ak should
mimic the behaviour of the true Jacobian along the line joining xk−1 to xk.
But for all other directions orthogonal to dk there is no information about Ak.
Hence, Broyden10 suggests to use information from the previous matrix Ak−1,
i.e., Aky = Ak−1y for all y · dk = 0. The hope is that if the initial matrix A0 is
close to the Jacobian matrix DF (x∗), then subsequent approximations Ak stay
close.

5.2.1 Rank-one update and the “good” Broyden method

Given a matrix C and vector w, z and g, let us construct a matrix D satisfying the
properties:

(1) Dw = z.

(2) Dy = Cy for all vector y orthogonal to g, i.e., y · g = 0.

The second property suggests that we should consider D of the form

D = C + p⊗ g

for some vector p. Then, using that (p⊗ g)y = (g · y)p = 0 the second property is
satisfied. To identify p we compute using the first property

z = Dw = Cw + (g ·w)p ⇒ p =
z− Cw

g ·w
.

10C.G. Broyden, On the discovery of the “good Broyden” method, Math. Program., Ser. B,
87:209–213 (2000)
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Hence, we obtain the formula

D = C +
(z− Cw)⊗ g

g ·w
. (5.3)

Let us consider an initial guess x0 and an initial invertible matrix A0. Then, Broyden’s
method initializes as

1. Compute d0 = −A−10 F (x0);

2. Update x1 = x0 + d0.

To obtain a new matrix A1 satisfying the Secant condition and the orthogonal prop-
erty that is also a rank-one update of A0, we choose D = A1, C = A0, g = d0 =
−A−10 F (x0), w = (x1 − x0) = d0 and z = F (x1)− F (x0) in (5.3) to get

A1 = A0 +
(F (x1)− F (x0)− A0d0)⊗ d0

d0 · d0

= A0 +
F (x1)

d0 · d0

⊗ d0. (5.4)

Then, we can continue with

1. Compute d1 = −A−11 F (x1);

2. Update x2 = x1 + d1,

which leads to the “good” Broyden method:
Select x0 and an invertible A0. For k = 0, 1, 2, . . . , do the following:

1. Compute dk = −A−1k F (xk);

2. Update xk+1 = xk + dk;

3. Update

Ak+1 = Ak +
F (xk+1)− F (xk)− Akdk

dk · dk
⊗ dk;

4. Compute A−1k .

5.2.2 The Sherman–Morrison formula and the “bad” Broyden method

One disadvantage of the “good” Broyden method is that at every iteration a matrix
has to be inverted. We now introduce the Sherman–Morrison formula which gives a
formula for A−1k in terms of A−1k−1. This means that by performing only the inversion
operation on the initial matrix A0, we can readily obtain A−11 , A−12 , . . . , without
inverting a matrix again.

We will make use of the equation (5.3). Firstly, consider two matrices A,B ∈ Rn×n

and two vectors u,v ∈ Rn such that B is the rank-one update of A:

B = A+ u⊗ v. (5.5)

We start with two computations:
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1. If Ax = u, then

Bx = Ax + (u vT )x = u + (v · x)u = (1 + v · x)u,

and hence

B−1u =
x

1 + v · x
=

A−1u

1 + v · A−1u
. (5.6)

2. If x is such that v · A−1x = 0, i.e., v is orthogonal to A−1x, then

BA−1x = (A+ u vT )A−1x = x + (v · A−1x)u = x,

which yields

B−1x = A−1x. (5.7)

Next, we choose D = B−1, C = A−1, g = A−Tv, w = u and z = A−1u
1+v·A−1u

in the
setting of Section 5.2.1, then the equations (5.6) and (5.7) becomes

Dw = z, Dx = Cx for x · g = 0.

By the formula (5.3) we see that

B−1 = A−1 +
[( A−1u

1+v·A−1u
− A−1u)⊗ A−Tv]

v · A−1u
= A−1 − A−1(u⊗ v)A−1

1 + v · A−1u
. (5.8)

This formula that gives the inverse of a rank one update is known as the Sherman–
Morrison formula.

Exercise. Convince yourselves that

A−1 +
[( A−1u

1+v·A−1u
− A−1u)⊗ A−Tv]

v · A−1u
= A−1 − A−1(u⊗ v)A−1

1 + v · A−1u
.

Let us consider an initial guess x0 and an initial invertible matrix A0. Then,
Broyden’s method initializes as

1. Compute d0 = −A−10 F (x0);

2. Update x1 = x0 + d0.

In the “good” Broyden method, the next step is to obtain the matrix A1 from A0 via
a rank-one update, and then compute d1 = −A−11 F (x1) and update x2 = x1 + d1.
We now use the formula (5.8). Recall the three conditions:

1. A1d0 = A1(x1 − x0) = F (x1)− F (x0),
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2. A1 = A0 + p0 ⊗ d0 for p0 = F (x1)
d0·d0

from (5.4),

3. If y · d0 = 0, then A1y = A0y.

Compare with (5.5) we should set

B = A1, A = A0, u = p0 =
F (x1)

d0 · d0

, v = d0,

and obtain

A−11 = A−10 −
A−10 (F (x1)

d0·d0
⊗ d0)A

−1
0

1 + d0 · A−10
F (x1)
d0·d0

= A−10 −
A−10 (F (x1)⊗ d0)A

−1
0

d0 · d0 + d0 · A−10 F (x1)
.

Notice that if we have A−10 , then the above computation for A−11 only involves matrix
multiplication. Furthermore, with the above choices, we see that setting y = A−10 x
in (5.7) gives

if d0 · y = 0 then A−11 x = A−10 x = y ⇒ A1y = x = A0y.

Then, we can continue with d1 = −A−11 F (x1) and x2 = x1 + d1 as before. This leads
to the “bad” Broyden method:

Select x0 and an invertible A0. For k = 0, 1, 2, · · · , do the following:

1. Compute dk = −A−1k F (xk);

2. Update xk+1 = xk + dk;

3. Compute

uk = A−1k F (xk+1), ck = dk · dk + dk · uk.

4. Compute

A−1k+1 = A−1k −
1

ck
(uk ⊗ dk)A

−1
k .

Remark 5.1. The “good” Broyden method involving the formula for Ak is named
so as it seems to perform better numerically than the “bad” Broyden method when
observed by Broyden and his co-workers11.

Example 5.2. For the system of equations

F (x) =

x2 + y2 + z2 − 3
x2 + y2 − z − 1
x+ y + z − 2

 = 0

11A. Griewank, Broyden update, the Good and the Bad!, Documenta. Math. Extra volume
301–315 (2012).
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we compute the first two iterates using “bad” Broyden’s method with the initial guess
x0 = (1, 0, 1) and A0 = DF (x0). The Jacobian matrix DF (x) and the first matrix
A0 = DF (x0) are given as

DF (x) =

2x 2y 2z
2x 2y −1
1 1 1

 , A0 =

2 0 2
2 0 −1
1 1 1


We first compute d0 = −A−10 F (x0):

d0 = −

 1/6 1/3 0
−1/2 0 1
1/3 −1/3 0

−1
−1
0

 =

 1/2
−1/2

0


and update

x1 = x0 + d0 =

 3/2
−1/2

1

 .

Then, computing u0 and c0:

u0 = A−10 F (x1) =

 1/4
−1/4

0

 , c0 =
3

4
,

and calculate

A−11 = A−10 −
4

3

 1/8 1/8 0
−1/8 −1/8 0

0 0 0

A−10 =
1

18

 1 5 3
−7 1 15
6 −6 0

 .

This allows us to compute d1 = (−1/6, 1/6, 0) and x2 = x1 + d1 = (4/3,−1/3, 0).

The trade-off for using an approximation of the Jacobian matrix in Broyden’s
method is the reduction of the convergence rate. We expect that Broyden’s method
may not converge quadratically as in the case of Newton’s method, but we now show
that Broyden’s method converges linearly.

Theorem 5.2 (Convergence of Broyden’s method). Let F (x) be differentiable func-
tion such that its Jacobian DF (x) is Lipschitz continuous with Lipschitz constant γ
on a convex open set D ⊂ Rn, and suppose x∗ is a point such that F (x∗) = 0 and the
Jacobian DF (x∗) at x∗ is invertible. Then, there exist positive constants ε and δ such
that if the initial iterate x0 and matrix A0 are chosen satisfying ||x0 − x∗|| < ε and
||A0 −DF (x∗)|| ≤ δ, then the iterates xn and An generated by the (good) Broyden’s
method are all well-defined and the method converges linearly with

‖xk+1 − x∗‖ ≤ 1

2
‖xk − x∗‖.
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5.3 Steepest descent method

We recall for scalar nonlinear equations f(x) = 0, the only advantage of the Bisection
method over Newton/Quasi-Newton method is that the initial guess does not need
to be too close to the true solution x∗. In a similar way, the previous methods in
this section can be rather limited if the initial guess is far away from the solution.
Steepest descent method is a simple iterative method that makes no assumptions
on the initial guess. The key idea is if x∗ is a solution to F (x) = 0, then x∗ is a
minimum of the function

g(x) =
1

2
F (x)TF (x) =

1

2
‖F (x)‖22. (5.9)

Then, from an initial guess x0 we should generate a sequence

x1, x2, · · · , xk, · · ·

such that

g(x0) > g(x1) > g(x2) > · · · > g(xk) > · · · (5.10)

and hope that {xk}k∈N converges to x∗. To relate xk and xk+1, we consider the update
formula

xk+1 = xk + αkdk,

for vector dk ∈ Rn (called the search direction) and scalar αk ∈ R (called the
search step/step size).

Using Taylor’s expansion, we have

g(xk+1) = g(xk) + αk∇g(xk) · dk +
α2
k

2
dk ·D2g(y)dk,

where D2g is the Hessian matrix of g, and y is a point on the line connecting xk and
xk+1. Therefore, if αk is sufficiently small, neglecting the Hessian term leads to

g(xk+1) ≈ g(xk) + αk∇g(xk) · dk.

Hence, if αk > 0, we should choose dk such that ∇g(xk) ·dk < 0, and one such choice
is dk = −∇g(xk). The resulting iterative method is called Steepest descent (also
sometimes called Gradient descent).

For the function g defined in (5.9), if F (x) = (f1(x), · · · , fn(x)), then

g(x) =
1

2

n∑
i=1

|fi(x)|2 ⇒ ∂g

∂xj
=

n∑
i=1

fi(x)
∂fi
∂xj

=
n∑
i=1

(DF )ijFi.

Hence, we obtain that the gradient of g is given as

∇g(x) = DF (x)T F (x),
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where DF (x) is the Jacobian matrix of F (x), and the search direction dk should be
dk = −∇g(xk) = −DF (xk)

TF (xk).
It remains choose the step size αk. Too small values will cause the algorithm

to converge slowly, while too large values will cause the algorithm to overshoot the
minimum x∗. An optimal value for αk should satisfy

g(xk + αkdk) = min
α∈R

g(xk + αdk),

i.e., the new iteration xk+1 = xk +αkdk is optimal in minimizing the function g along
the line {y = xk + αdk |α ∈ R}. With this in mind, the steepest descent algorithm
is given as follows.

Steepest descent method. Select x0, for k = 0, 1, 2, . . . , do the following

1. Find αk that solves the one-dimensional minimization problem

min
α≥0

g(xk − α∇g(xk)).

2. Update xk+1 by

xk+1 = xk − αk∇g(xk).

5.3.1 Application to linear problems

We can use the steepest descent method to solve linear problems. For a given SPD
matrix A ∈ Rn×n and a vector b ∈ Rn, instead of inverting A to find the solution x
to Ax = b, we consider minimizing the function

g(x) =
1

2
xTAx− bTx.

We now show that if x∗ satisfies g(x∗) ≤ g(x) for all x ∈ Rn, then Ax∗ = b. Indeed,
since x∗ is a minimum of g, we have that ∇g(x∗) = 0. Now,

∂g

∂xi
=

∂

∂xi

(1

2

n∑
k,j=1

akjxjxk −
n∑
i=1

bixi

)
=

1

2

( n∑
j=1

aijxj +
n∑
k=1

akixk

)
− bi

=
n∑
j=1

aijxj − bi,

when we use the symmetry of A. Hence,

∇g(x∗) = Ax∗ − b = 0.

The search direction dk is given by dk = −∇g(xk) = b− Axk, and for the step size
αk, which is the minimizer of the function h(s) = g(xk + sdk), should satisfy

h′(αk) = ∇g(xk + αkdk) · dk = 0,
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and so (
A(xk + αkdk)− b

)
· dk = 0 ⇒ αk =

(b− Axk) · dk
dk · Adk

=
dk · dk

dk · Adk
.

For this problem, the steepest descent method can be written more precisely:
Steepest descent method for solving Ax = b. Select x0, for k = 0, 1, 2, . . . ,

do the following

1. Compute

dk = b− Axk, αk =
dk · dk

dk · Adk
.

2. Update xk+1 by

xk+1 = xk + αkdk.

5.3.2 Properties of the steepest descent method

Lemma 5.3. Let d0, d1, . . . denote the successive search directions from the steepest
descent method with optimal step sizes α∗0, α∗1, . . . , i.e.,

g(xk + α∗kdk) ≤ g(xk + sdk) for any s ∈ R.

Then, consecutive search directions are orthogonal:

dk · dk+1 = 0 for k = 0, 1, 2, . . . .

This means that the steepest descent method moves in a zig-zag direction to reach the
minimum of g(x).

Proof. To obtain the optimal step size α∗k, we consider the function h : R→ R defined
as

h(s) = g(xk + sdk).

Then, h′(α∗k) = 0 as α∗k is a minimum of h. Differentiating and the Chain rule gives

0 = h′(α∗k) = ∇g(xk + α∗kdk) · dk = −dk+1 · dk.

We now state a theorem for the convergence of the steepest descent method with
constant step size (αk = α for all k).

Theorem 5.3 (Convergence of the steepest descent method with constant step size).
Let g : Rn → R be a twice continuously differentiable function satisfying

1. there exists a minimum x∗ such that g(x∗) ≤ g(x) for all x ∈ Rn;
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2. g(y) ≥ g(x) +∇g(x)T (y − x) for all x,y ∈ Rn (Convexity);

3. the Hessian matrix D2g satisfies ‖D2g‖ ≤ L for some constant L > 0.

Then, the steepest descent method with xk+1 = xk − α∇g(xk) for a fixed step size
α ≤ 1

L
satisfies

g(xk)− g(x∗) ≤ ‖x0 − x∗‖2

2αk
.

This implies R-sublinear convergence of the sequence (g(xk))k∈N to g(x∗).

Proof. By the assumption on the Hessian and Taylor’s theorem, for some z ∈ Rn, we
see that

g(y) = g(x) +∇g(x)T (y − x) +
1

2
(y − x)TD2g(z)(y − x)

≤ g(x) +∇g(x)T (y − x) +
1

2
L‖y − x‖2.

Setting x = xk−1, y = xk = xk−1 − α∇g(xk−1), then

g(xk) ≤ g(xk−1) +∇g(xk−1)
T (xk − xk−1) +

1

2
L‖xk − xk−1‖2

= g(xk−1)− α‖∇g(xk−1)‖2 +
1

2
L‖α∇g(xk−1)‖2

= g(xk−1)− (1− Lα
2

)α‖∇g(xk−1)‖2.

If α ≤ 1
L

, then (1− Lα
2

) ≥ 1
2

and so

g(xk) ≤ g(xk−1)−
α

2
‖∇g(xk−1)‖2.

Unless xk−1 = x∗ (then ∇g(xk−1) = 0), ‖∇g(xk−1)‖2 is always positive, which means
that the value of g strictly decreases along the sequence (xk)k∈N generated by the
steepest descent method.

Now, in the convexity assumption substitute y = x∗, x = xk−1 to get

g(xk−1) ≤ g(x∗)−∇g(xk−1)
T (x∗ − xk−1) = g(x∗) +∇g(xk−1)

T (xk−1 − x∗).

Then, combining the last two inequalities give

g(xk) ≤ g(x∗) +∇g(xk−1)
T (xk−1 − x∗)− α

2
‖∇g(xk−1)‖2

= g(x∗) +
1

2α

(
2α∇g(xk−1)

T (xk−1 − x∗)− α2‖∇g(xk−1)‖2 ∓ ‖xk−1 − x∗‖2
)

= g(x∗) +
1

2

(
‖xk−1 − x∗‖2 − ‖(xk−1 − α∇g(xk−1))− x∗‖2

)
= g(x∗) +

1

2

(
‖xk−1 − x∗‖2 − ‖xk − x∗‖2

)
.
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Using that g(xk) < g(xk−1) < · · · < g(x0), we obtain

g(xk)− g(x∗) ≤ 1

k

k∑
i=1

(g(xi)− g(x∗)) ≤ 1

2αk

k∑
i=1

(
‖xi−1 − x∗‖2 − ‖xi − x∗‖2

)
=

1

2αk

(
‖x0 − x∗‖2 − ‖xk − x∗‖2

)
≤ 1

2αk
‖x0 − x∗‖2.

Remark 5.2. Sometimes the assumption on the Hessian ‖D2g‖ ≤ L is replaced with
the Lipschitz condition

‖∇g(x)−∇g(y)‖ ≤ L‖x− y‖ for all x,y ∈ Rn. (5.11)

We show that they are equivalent if g is any twice continuously differentiable convex
function. Take the induced 2-norm for the matrix norm, then ‖D2g‖22 = max{|λ|2 : λ
is an eigenvalue of D2g}. For any non-zero vector a consider the function

ha(t) = a · ∇g(x + t(y − x)).

Since g is assumed to be twice continuously differentiable, we can apply the Mean
value theorem to find a ta ∈ (0, 1) such that

h(1)− h(0)

1− 0
= h′(ta) = a · [D2g(x + ta(y − x))(y − x)] =: a ·D2g(za)(y − x).

Hence,

a · (∇g(y)−∇g(x)) = h(1)− h(0) = a ·D2g(za)(y − x).

Choosing

a =
∇(g(y)− g(x))

‖∇(g(y)− g(x))‖

so that ‖a‖ = 1 we see that

‖∇(g(y)− g(x))‖ = a · (∇g(y)−∇g(x)) ≤ sup
‖a‖=1

a ·D2g(za)(y − x)

≤ sup
‖a‖=1

‖D2g(za)‖‖y − x‖ ≤ L‖y − x‖.

Conversely, suppose the Lipschitz condition (5.11) holds. For fixed vectors x,y and
a constant c > 0, let

j(t) = ∇g(x + tcy).

Note that

j′(t) = cD2g(x + tcy)y.
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The Mean value theorem suggests that there is some tc ∈ (0, 1) such that

∇g(x + cy)−∇g(x) = j(1)− j(0) = j′(tc) = cD2g(x + tccy)y.

Taking norms and applying the Lipschitz condition gives

‖D2g(x + tccy)y‖ =
1

c
‖∇g(x + cy)−∇g(x)‖ ≤ L‖y‖.

Sending c→ 0 gives

‖D2g(x)y‖ ≤ L‖y‖.

If we choose y to be any eigenvector of D2g(x) then this shows that the absolute value
of any eigenvalues of D2(gx) must be less than or equal to L, and so ‖D2g‖ ≤ L.
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6 Polynomial interpolation

According to the its government, the population of Country X was

Year 1998 2002 2003
Population (in millions) 6.5437 6.787 6.8031

We know it is very expensive to do the population statistics every year. Then a very
natural but important question to ask is:

1. (Interpolation) What was the population in the year 2000?

2. (Extrapolation) What will the population be in the year 2005?

The easiest way to answer these questions is to assume a linear growth of population
in between the census years (i.e., 1998, 2002, and 2003). Then, the population in
2000 (let us denote this by P (2000)) should be the average of P (1998) and P (2002),
and will be equal to 6.665 millions. The population in 2005, i.e., P (2005), will be
6.835 millions. This kind of interpolation (or extrapolation) technique is called the
piecewise linear interpolation method.

Figure 1: Interpolation using piecewise linear polynomial.

The drawback of the method is that the future forecast will only depend on the last
two data P (2002) and P (2003). In general, we would like to involve P (1998) in our
forecast to reflect long-term effects. This leads to the Vandermonde interpolation
method.

6.1 Vandermonde Interpolation

From this interpolation method, we try to get the unique polynomial of the highest
degree that can pass through all the given data points. Since we have three given
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data points: P (1998), P (2002), and P (2003), we can only determine a quadratic
polynomial

p(x) = α0 + α1x+ α2x
2

that fits them. To obtain the coefficients αi, i = 0, 1, 2, we require p(x) to pass
through the data points, i.e.,

α0 + α1x+ α2x
2 = P (x), for x = 1998, 2002, 2003.

Thus in matrix notations, we have:1 1998 19982

1 2002 20022

1 2003 20032

α0

α1

α2

P (1998)
P (2002)
P (2003)

 . (6.1)

Solving the system, we get α0 = 36115, α1 = 36.061 and α2 = −0.009. Thus

p(x) = 36115 + 36.061x− 0.009x2

and, in particular, p(2005) = 6.781 millions.
This method is simple but naive and it has three major drawbacks.

• First the matrix in (6.1) is a well-known ill-conditioned matrix called the
Vandermonde matrix. Its condition number is about 1013. Hence in the
computed αi, only 3 significant digits are accurate if we use double precision,
and none of the digits will be correct in single precision (see the end of Section
4.4).

• The second drawback is that solving (6.1) requires Gaussian Elimination, which
is an O(n3) process, where n is the degree of the interpolation polynomial. This
drawback becomes more serious when n is large or when new data comes in
very often, as we will have to update the coefficients as often.

• A third drawback is that if we receive a new data point, we have to reconstruct
the Vandermonde matrix, which would now have an additional row and column.
Inverting the new matrix cost even more computation effort than the previous
one.

As an example, if we are now given the population P (2004), we will have to
increase the degree of the interpolation polynomial by one:

q(x) = β0 + β1x+ β2x
2 + β3x

3.

To get the coefficients βi’s, we will then have to solve a system similar to (6.1) but
now with dimension 4:

1 1998 19982 19983

1 2002 20022 20023

1 2003 20032 20033

1 2004 20042 20043



β0
β1
β2
β3

 =


P (1998)
P (2002)
P (2003)
P (2004)

 .

Note that the condition number of the 4-by-4 matrix is 1019, and we have no hope of
solving the system to any digit of accuracy.
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6.1.1 Interpolation with polynomials of degree n

More generally, suppose we are given n+ 1 observation data :

x x0 x1 x2 · · · xn
f(x) f0 f1 f2 · · · fn

(6.2)

where xi 6= xj for all i 6= j, we would like to see if it is possible to determine a
polynomial p(x) of degree ≤ n such that

p(xi) = fi, i = 0, 1, . . . , n. (6.3)

Let us write

p(x) = α0 + α1x+ α2x
2 + · · ·+ αnx

n,

then using the conditions (6.3), we have
1 x0 x20 · · · xn0
1 x1 x21 · · · xn1
...

...
... · · · ...

1 xn x2n · · · xnn



α0

α1
...
αn

 =


f0
f1
...
fn

 (6.4)

where the coefficient matrix

Va =


1 x0 x20 · · · xn0
1 x1 x21 · · · xn1
...

...
... · · · ...

1 xn x2n · · · xnn

 (6.5)

is called a Vandermonde matrix. Clearly, finding a polynomial p(x) satisfying
the conditions (6.3) amounts to finding (n+1) coefficients α0, α1, . . . , αn such that
(6.4) is satisfied.

6.2 Lagrange interpolation

The Vandermonde method is related to the basis {1, x, x2, . . . , xn} for polynomials of
degree n. A different set of basis would result in the different interpolation method.
The Lagrange interpolation employs the basis functions

lj(x) =
(x− x0)(x− x1) · · · (x− xj−1)(x− xj+1) · · · (x− xn)

(xj − x0)(xj − x1) · · · (xj − xj−1)(xj − xj+1) · · · (xj − xn)
, (6.6)

for j = 0, 1, . . . , n. Note that denominator is fixed and the numerator can be expanded
to get a polynomial of degree n, and so lj(x) is a polynomial of degree n, and

lj(xj) = 1 and lj(xi) = 0 ∀i 6= j.
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Then, the Lagrange interpolation of the function f is

L(x) = f0l0(x) + f1l1(x) + · · ·+ fnln(x),

which satisfies

L(xi) = fi, i = 0, 1, 2, . . . , n.

Example 6.1. Consider the data set

x 0 1 2
f(x) −2 −1 2

Then, we have

l0(x) =
(x− 1)(x− 2)

(−1)(−2)
= (x2 − 3x+ 2)/2,

l1(x) =
x(x− 2)

(1)(−1)
= −x2 + 2x,

l2(x) =
x(x− 1)

(2)(1)
= (x2 − x)/2,

and so

L(x) = −2l0(x)− l1(x) + 2l2(x) = x2 − 2.

6.2.1 Cost of constructing the polynomial

Suppose we are already given (n+ 1) data points to interpolate:

x x0 x1 x2 · · · xn
f(x) f0 f1 f2 · · · fn

The nth degree Lagrange interpolation polynomial is given by

Ln(x) = f0
(x− x1)(x− x2) · · · (x− xn)

(x0 − x1)(x0 − x2) · · · (x0 − xn)

+ f1
(x− x0)(x− x2) · · · (x− xn)

(x1 − x0)(x1 − x2) · · · (x1 − xn)

+ · · ·

+ fn
(x− x0)(x− x1) · · · (x− xn−1)

(xn − x0)(xn − x1) · · · (xn − xn−1)
.

Let us denote it by

Ln(x) = α0(x− x1)(x− x2) · · · (x− xn)

+ α1(x− x0)(x− x2) · · · (x− xn)

+ · · ·+ αn(x− x0)(x− x1) · · · (x− xn−1).
(6.7)
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The question is how costly it is to compute αi. Notice that for 0 ≤ i ≤ n,

αi =
fi

(xi − x0)(xi − x1) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)
, (6.8)

and so it requires n subtractions, n−1 multiplications and one division to obtain one
αi for 1 ≤ i ≤ n. Hence the total cost of computing all (n+ 1) coefficients will be

n+1∑
i=i

2n = (n+ 1)(n+ 2) ∼ O(n2) for large n.

6.2.2 Cost of evaluating the polynomial

Suppose we have already obtained all the αi in (6.7). Our next question is how costly
it will be to compute pn(t) at arbitrary point t. Let us define:

P =
n∏
i=0

(t− xi)

(which can be computed in (n + 1) subtractions and n multiplications). Then (6.7)
becomes

Ln(t) = P ·
(

α0

t− x0
+

α1

t− x1
+ . . .+

αn
t− xn

)
,

which can now be computed in (n + 1) additions and (n + 2) multiplications. Thus
Ln(t) can be computed in (n+ 1) +n+ (n+ 1) + (n+ 2) = 4n+ 4 ∼ O(n) operations
for any t.

6.2.3 Cost of updating the polynomial

Suppose we are given one more data point to interpolate:

x x0 x1 x2 · · · xn xn+1

f(x) f0 f1 f2 · · · fn fn+1

The (n+ 1)th degree Lagrange interpolation polynomial is given by

Ln+1(x) = f0
(x− x1)(x− x2) · · · (x− xn)(x− xn+1)

(x0 − x1)(x0 − x2) · · · (x0 − xn)(x0 − xn+1)

+ f1
(x− x0)(x− x2) · · · (x− xn)(x− xn+1)

(x1 − x0)(x1 − x2) · · · (x1 − xn)(x1 − xn+1)

+ · · ·

+ fn
(x− x0)(x− x1) · · · (x− xn−1)(x− xn+1)

(xn − x0)(xn − x1) · · · (xn − xn−1)(xn − xn+1)

+ fn+1
(x− x0)(x− x1) · · · (x− xn−1)(x− xn)

(xn+1 − x0)(xn+1 − x1) · · · (xn+1 − xn−1)(xn+1 − xn)
.
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It is very complicated indeed, but we can simplify it using (6.8). In fact, if we rewrite
Ln+1(x) as

Ln+1(x) = β0(x− x1)(x− x2) · · · (x− xn)(x− xn+1)

+ β1(x− x0)(x− x2) · · · (x− xn)(x− xn+1)

+ · · ·+ βn(x− x0)(x− x1) · · · (x− xn−1)(x− xn+1)

+ βn+1(x− x0)(x− x1) · · · (x− xn−1)(x− xn),

then we can easily check that

βi =


αi

xi − xn+1

if 0 ≤ i ≤ n,

fn+1

(xn+1 − x0)(xn+1 − x1) · · · (xn+1 − xn−1)(xn+1 − xn)
if i = n+ 1.

Now it is clear that βi, 0 ≤ i ≤ n, can each be computed in 1 subtraction, 1 multi-
plication and 1 division, while βn+1 can be computed in (n+ 1) subtractions, (n+ 1)
multiplications and 1 division. Thus Ln+1 can be updated from Ln with O(n) opera-
tions.

The above also demonstrates the slight inconvenience working with Lagrange in-
terpolation when a new data point is added, as it requires re-computation of the
polynomial again from scratch, which can be numerically unstable.

6.3 Newton’s interpolation

In light of the difficulty that one has to recompute the coefficients of the Lagrange
interpolation when a new data point appears, we turn to a different method, called
Newton’s interpolation, which is based on using

1, x− x0, (x− x0)(x− x1), · · · , (x− x0)(x− x1) · · · (x− xn−1)

as a basis of the polynomials of degree ≤ n. If pn(x) be a polynomial of degree ≤ n
satisfying p(xi) = fi, then we can write

pn(x) = c0 + c1(x− x0) + c2(x− x0)(x− x1) + · · ·
+ cn(x− x0)(x− x1) · · · (x− xn−1)

= c0 + c1(x− x0) + c2

1∏
i=0

(x− xi) + · · ·+ ck

k−1∏
i=0

(x− xi) + · · ·

+ cn

n−1∏
i=0

(x− xi).

(6.9)

The advantage of Newton’s interpolation over Lagrange’s interpolation is that if we
have a new data point (xn+1, fn+1), we get

pn+1(x) = pn + cn+1

n∏
i=0

(x− xi),
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where we only need to compute the coefficient cn+1, and the coefficients c0, . . . , cn
remain unchanged.

6.3.1 Divided differences

Consider a function f defined on [a, b], and a set of distinct nodal points in [a, b]:

a = x0 < x1 < x2 < · · · < xn−1 < xn = b.

Then, we can define the Divided Differences (DD) of different orders as follows.

Definition 6.1 (Divided differences). We call

f [x0] = f(x0), f [x1] = f(x1), · · · , f [xn] = f(xn)

the zeroth-order divided differences of f(x). We call

f [x0, x1] =
f [x1]− f [x0]

x1 − x0
, f [x1, x2] =

f [x2]− f [x1]

x2 − x1
, · · · ,

the first order divided differences of f(x); and for k = 2, 3, . . . , n, we call

f [x0, x1, · · · , xk] =
f [x1, x2, · · · , xk]− f [x0, x1, · · · , xk−1]

xk − x0

the kth order divided differences of f(x).

Using these divided differences, we can now calculate the coefficients in (6.9).
First, letting x = x0 in (6.9), we get

c0 = p(x0) = f0 = f [x0].

taking x = x1 in (6.9), we see

c1 =
p(x1)− c0
x1 − x0

=
p(x1)− p(x0)
x1 − x0

=
f [x1]− f [x0]

x1 − x0
= f [x0, x1] (= f [x1, x0]).

Similarly, taking x = x2 in (6.9) we can derive

f(x2) = p(x2) = c0 + c1(x2 − x0) + c2(x2 − x0)(x2 − x1)

and rearrange gives

c2 =

(
f(x2)− f(x0)

x2 − x0
− f [x0, x1]

)
/(x2 − x1) =

f [x0, x2]− f [x1, x0]

x2 − x1
= f [x1, x0, x2].
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We next show that f [x1, x0, x2] = f [x0, x1, x2]. In fact,

f [x1, x0, x2] =
f [x0, x2]− f [x1, x0]

x2 − x1

=
f(x2)− f(x0)

(x2 − x0)(x2 − x1)
− f(x1)− f(x0)

(x1 − x0)(x2 − x1)

=
f(x2)− f(x1)

(x2 − x0)(x2 − x1)
+

f(x1)− f(x0)

(x2 − x0)(x2 − x1)
− f(x1)− f(x0)

(x1 − x0)(x2 − x1)

=
f [x1, x2]

x2 − x0
+
f(x1)− f(x0)

(x2 − x1)

( 1

x2 − x0
− 1

x1 − x0

)
=

f [x1, x2]

x2 − x0
− f [x0, x1]

x2 − x0
= f [x0, x1, x2].

In general, we can deduce

ck = f [x0, x1, x2, · · · , xk].

Thus, Newton’s interpolation of f(x) can be written as

Nn(x) = f [x0] + f [x0, x1](x− x0) + · · ·
+ f [x0, x1, · · · , xn](x− x0)(x− x1) · · · (x− xn−1) .

The Newton’s interpolation can be expressed in a simplified form when x0, x1, x2,
. . . , xn are equally spaced. In this case, let us introduce h = xi+1 − xi for each i and
write x = x0 + s h. Then we know x − xi = (s − i)h, and the Newton form can be
written as

Nn(x) = Nn(x0 + sh) = f [x0] + s h f [x0, x1] + s(s− 1)h2f [x0, x1, x2] + · · ·
+ s(s− 1) · · · (s− n+ 1)hnf [x0, x1, · · · , xn]

= f [x0] +
n∑
k=1

s(s− 1) · · · (s− k + 1)hkf [x0, x1, · · · , xk].

6.3.2 Derivatives and divided differences

We recall the following result, known as Rolle’s theorem.

Theorem 6.1 (Rolle’s theorem). Let f : [a, b] → R be n − 1-times continuously
differentiable on [a, b] and the nth derivative exists on (a, b), and there are n intervals
given by

a ≤ a1 < b1 ≤ a2 < b2 ≤ · · · ≤ an < bn ≤ b

such that f(ak) = f(bk) for k = 1, . . . , n, then there exists ξ ∈ (a, b) such that
f (n)(ξ) = 0.

99



We begin with some observations:

1. If f is constant, its first order DD will vanish.

2. If f is a linear function, its first order DD is constant and its second order DD
will vanish.

3. If f is a quadratic function, its first and second order DD are linear and constant,
while its third order DD will vanish.

These observations tell us that divided difference acts very similar to derivatives.

Theorem 6.2. Suppose f ∈ Cn[a, b], and a = x0 < x1 < x2 < · · · < xn−1 < xn = b
are distinct points in [a, b]. Then there exists some ξ ∈ (a, b) such that

f [x0, x1, x2, · · · , xn] =
f (n)(ξ)

n!
.

Proof. Let Nn(x) be the Newton’s interpolation of f(x) at the nodal points a = x0 <
x1 < x2 < · · · < xn−1 < xn = b, and set g(x) = f(x) −Nn(x). Since f(xi) = Nn(xi)
for i = 0, 1, . . . , n, g has n+ 1 distinct zeros in [a, b]. Then Rolle’s theorem gives the
existence of a point ξ ∈ (a, b) such that g(n)(ξ) = 0, which implies

N (n)
n (ξ) = f (n)(ξ).

But Nn(x) is a polynomial of degree n with its leading coefficient f [x0, x1, x2, · · · , xn],
so we have for any x ∈ [a, b]

N (n)
n (x) = n!f [x0, x1, x2, · · · , xn].

This completes the proof.

6.3.3 Symmetry of DD

We first state an important result.

Theorem 6.3. Let p(x) and q(x) be two polynomials of degree ≤ n such that

p(xi) = q(xi) for i = 0, 1, . . . , n

at n+ 1 distinct points. Then, p(x) = q(x) for any x.

Proof. Take the difference r(x) = p(x) − q(x) which is a polynomial of degree ≤ n.
Then, r has n+ 1 roots at x0, . . . , xn. By the fundamental theorem of algebra this is
only possible if r(x) = 0 for any x.

Remark 6.1. A consequence of this is that the Lagrange’s interpolation and Newton’s
interpolation of the function f at the same data points (x0, f0), . . . , (xn, fn) actually
are the same polynomial, but with seemingly different expressions.
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In this section, we show that the divided differences are symmetric, in the sense
that any permutation of its arguments does not alter its value. Clearly, f [x0] is
symmetric. For the 1st order DD, we have

f [x0, x1] =
f [x1]− f [x0]

x1 − x0
=
f [x0]− f [x1]

x0 − x1
= f [x1, x0],

so the first order DD are symmetric.
To see the symmetry of the second order DD, namely

f [x0, x1, x2] = f [x1, x0, x2],

we recall that the interpolation of f(x) at the point x0, x1, x2 is given by

N1(x) = f [x0] + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1).

Now, if we consider the interpolation of f(x) at the points x1, x0, x2 (just swap the
position of x0 with x1), we have

Ñ1(x) = f [x1] + f [x1, x0](x− x1) + f [x1, x0, x2](x− x1)(x− x0).

Note that

f [x0] + f [x0, x1](x− x0) = f0 +
f1 − f0
x1 − x0

(x− x0) = f0 +
f1 − f0
x1 − x0

(x− x1 + x1 − x0)

= f1 +
f0 − f1
x0 − x1

(x− x1) = f [x1] + f [x1, x0](x− x1),

and so by Theorem 6.3, uniqueness of the interpolation gives N1(x) = Ñ1(x), which
means that

f [x0, x1, x2](x− x0)(x− x1) = f [x1, x0, x2](x− x0)(x− x1),

and so

f [x1, x0, x2] = f [x0, x1, x2].

More generally, we have the following

Theorem 6.4. Let f : [a, b]→ R and consider a set of distinct nodal points a = x0 <
x1 < x2 < · · · < xn−1 < xn = b. Then the divided difference is a symmetric function
of its arguments. Namely if z0, z1, . . . , zn is a permutation of x0, x1, . . . , xn, then

f [z0, z1, z2, · · · , zn] = f [x0, x1, x2, · · · , xn].

Proof. It is easy to see that the divided difference f [z0, z1, z2, · · · , zn] is the coefficient
of xn in the polynomial of degree n that interpolates f at the points z0, z1, . . . , zn, while
the divided difference f [x0, x1, x2, · · · , xn] is the coefficient of xn in the polynomial of
degree n that interpolates f at the points x0, x1, . . . , xn. Since these two polynomials
of degree n agree at n+ 1 points, these two polynomials must be the same.
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6.3.4 Computing the coefficients

Given a set of observation data:

x0 x1 x2 · · · xn
f0 f1 f2 · · · fn

how do we compute the coefficients in Newton’s interpolation? We take the following
simple case as an example:

Table for computing divided difference f [x0, x1, x2, x3]
x0 f [x0] = f0

f [x0, x1]
x1 f [x1] = f1 f [x0, x1, x2]

f [x1, x2] f [x0, x1, x2, x3]
x2 f [x2] = f2 f [x1, x2, x3]

f [x2, x3]
x3 f [x3] = f3

Example 6.2. Compute the Newton form of interpolation satisfying the following
conditions:

x 3 1 5 6
f(x) 1 −3 2 4

We can compute as follows:

x0 = 3 f [x0] = 1
f [x0, x1] = 2

x1 = 1 f [x1] = −3 f [x0, x1, x2] = −3
8

f [x1, x2] = 5
4

f [x0, x1, x2, x3] = 7
40

x2 = 5 f [x2] = 2 f [x1, x2, x3] = 3
20

f [x2, x3] = 2
x3 = 6 f [x3] = 4

Thus the Newton’s interpolation can be written as follows:

N(x) = f [x0] + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x0)
+ f [x0, x1, x2, x3](x− x0)(x− x1)(x− x2)

= 1 + 2(x− 3)− 3

8
(x− 3)(x− 1) +

7

40
(x− 3)(x− 1)(x− 5).

(6.10)

Now if we add one more data point, we have the data table:

x 3 1 5 6 0
f(x) 1 −3 2 4 5

The calculation needs to be slightly changed as follows:
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x0 = 3 f [x0] = 1
f [x0, x1] = 2

x1 = 1 f [x1] = −3 f [x0, x1, x2] = − 3
8

f [x1, x2] =
5
4

f [x0, x1, x2, x3] =
7
40

x2 = 5 f [x2] = 2 f [x1, x2, x3] =
3
20

f [x0, x1, x2, x3, x4] =
11
72

f [x2, x3] = 2 f [x1, x2, x3, x4] = − 17
60

x3 = 6 f [x3] = 4 f [x2, x3, x4] =
13
30

f [x3, x4] = − 1
6

x4 = 0 f [x4] = 5

This immediately gives the Newton’s interpolation, adding only one term to the
polynomial (6.10):

p(x) = f [x0] + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x0)
+ f [x0, x1, x2, x3](x− x0)(x− x1)(x− x2)
+ f [x0, x1, x2, x3, x4](x− x0)(x− x1)(x− x2)(x− x3)

= 1 + 2(x− 3)− 3

8
(x− 3)(x− 1) +

7

40
(x− 3)(x− 1)(x− 5)

+
11

72
(x− 3)(x− 1)(x− 5)(x− 6).

6.3.5 Cost of constructing the polynomial

Suppose we are already given (n+ 1) data points to interpolate:

x x0 x1 x2 · · · xn
f(x) f0 f1 f2 · · · fn

The nth degree Newton’s interpolation is given by

Nn(x) = c0 + c1(x− x0) + . . .+ cn(x− x0)(x− x1) · · · (x− xn−1). (6.11)

The question is how costly it is to compute ci. Recall that the ci’s are the first entries
in each column of the divided difference table.

Let us then compute the cost of obtaining all the entries in the divided difference
table. Recall that the table looks something like this:

x 0th 1st (n− 1)th nth
x0 f [x0]

f [x0, x1]

x1 f [x1]
. . .

f [x1, x2] f [x0, . . . , xn−1]
...

...
... f [x0, . . . , xn]

f [xn−2, xn−1] f [x1, . . . , xn]

xn−1 f [xn−1]
...

f [xn−1, xn]
xn f [xn]
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For the 0th level column, we don’t have to do anything. We just have f [xi] = fi. In
the 1st level column, each divided difference is computed in the form:

f [xi]− f [xj]

xi − xj
which require 2 subtractions and 1 multiplication. Notice that there are only n 1st
level divided differences to compute in this column.

Next for the 2nd level divided differences. Again, each divided difference can be
computed in 2 subtractions and 1 multiplication, but there are only (n− 1) 2nd level
divided differences to compute. Repeating this argument, finally, for the nth level
divided difference, there is only one to compute (namely cn = f [x0, . . . , xn]); and it
can be computed in 2 subtractions and 1 multiplication. Thus to compute all the
entries in the divided difference table (in particular those ci’s), it requires

3 · [n+ (n− 1) + . . .+ 1] ∼ O(n2)

operations.

6.3.6 Cost of evaluating the polynomial

Suppose we have already obtained all the ci in (6.11). Our next question is how costly
it will be to compute Nn(t) at arbitrary point t. For this, we use the expression

Nn(t) = c0 + c1(t− x0) + · · ·+ cn(t− x0)(t− x1) · · · (t− xn−1)
= c0 + (t− x0)(c1 + (t− x1)(c2 + (t− x2)(c3 + (· · ·

+ (cn−2 + (t− xn−2)(cn−1 + cn(t− xn−1)) · · · )))))
This can now be computed in 2n additions and n multiplications. Thus for any t,
pn(t) can be computed in O(n) operations.

6.3.7 Cost of updating the polynomial

Suppose we are given one more data point to interpolate:

x x0 x1 x2 · · · xn xn+1

f(x) f0 f1 f2 · · · fn fn+1

The (n+ 1)th degree Newton’s interpolation is given by

Nn+1(x) = c0 + c1(x− x0) + · · ·+ cn(x− x0)(x− x1) · · · (x− xn−1)
+ cn+1(x− x0)(x− x1) · · · (x− xn−1)(x− xn).

Thus we only have to compute cn+1.
To compute cn+1, we have to add one entry at the bottom of each column in the

divided difference table. Since each entry in the table are of the form (a− b)/(c− d),
each of them can be computed in 2 subtractions and 1 multiplications. Moreover,
since there are (n+1) columns in the table to be computed (recalling we only need to
compute the 1st DD up to the (n+1)th DD), we only have to compute (n+1) entries.
We therefore can conclude that cn+1 can be computed in 2(n + 1) subtractions and
(n+ 1) multiplications. Thus the update can be done in O(n) operations.
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6.3.8 Summary of the interpolation methods

From the previous discussions, we can briefly summarize the computational costs of
three interpolation methods in the following table:

finding the coefficients adding one more data point
Vandermonde solve Ax = b solve completely new system

O(n3), ill-conditioned O(n3), more ill-conditioned
Lagrange compute

∏
i 6=j(xi − xj) compute

∏n
i=0(xi − xn+1)

O(n2) O(n)
Newton table calculation add one more row to the table

O(n2) O(n)

6.4 Error estimates of polynomial interpolations

Given a set of n+ 1 observation data at n+ 1 distinct points

x x0 x1 x2 · · · xn
f(x) f0 f1 f2 · · · fn

we know there exists a unique polynomial p(x) of degree ≤ n satisfying the conditions

p(xi) = fi, i = 0, 1, 2, . . . , n.

Then, we have the following error estimate.

Theorem 6.5. Suppose f ∈ Cn+1[a, b], and p(x) is the polynomial interpolation of
f(x) at the n+ 1 distinct points a = x0 < x1 < x2 < · · · < xn−1 < xn = b. Then, for
any x ∈ [a, b], there exists a point ξx ∈ (a, b) such that

f(x)− p(x) =
f (n+1)(ξx)

(n+ 1)!
(x− x0)(x− x1) · · · (x− xn). (6.12)

Proof. If x = xi for some i ∈ {0, 1, · · · , n}, then the result holds obviously. Now, we
consider x ∈ (a, b) but x 6∈ {x0, x1, · · · , xn} and introduce

φ(t) = f(t)− p(t)− λ(t− x0)(t− x1) · · · (t− xn).

For the fixed x, choose λ = λ(x) such that φ(x) = 0, then we have

φ(x) = 0, φ(x0) = φ(x1) = · · · = φ(xn) = 0.

By the Rolle’s theorem, we know

φ′(t) has at least n+ 1 distinct zeros,

with each zero lying in between any pair in {x0, x1, . . . , xn, x}. Similarly,

φ
′′
(t) has at least n distinct zeros.
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Continue this way, and we know

φ(n+1)(t) has at least one zero,

say ξx ∈ (a, b), i.e.,

φ(n+1)(ξx) = 0.

But notice that

φ(n+1)(t) = f (n+1)(t)− p(n+1)(t)− λ(n+ 1)!,

and especially

φ(n+1)(ξx) = f (n+1)(ξx)− λ(n+ 1)! = 0.

This gives

λ =
f (n+1)(ξx)

(n+ 1)!
.

Noting λ was chosen such that φ(x) = 0, we obtain

f(x)− p(x) =
f (n+1)(ξx)

(n+ 1)!
(x− x0)(x− x1) · · · (x− xn).

Example 6.3. Consider the function f(x) = sin(4πx) approximated by a polynomial
of degree 9 that interpolates f at 10 points in the interval [0, 1]. We can apply the
error estimate (6.12) with |f (10)(ξx)| ≤ (4π)10 and |x− xi| ≤ 1. So for all x ∈ [0, 1],

| sin(4πx)− p(x)| ≤ (4π)10

10!
.

6.5 Chebyshev polynomials

Using the interpolation error estimate (6.12), we can estimate the accuracy of each
interpolation polynomial when all the interpolating nodes

a = x0 < x1 < x2 < · · · < xn−1 < xn = b

are given. But with a different set of interpolating nodes, the resulting polynomial
will have a different accuracy. This raises a natural question: can we choose the
interpolating nodes so that the resulting polynomial reaches an optimal accuracy?
In this section, we shall discuss how to find such optimal polynomial. It is easy to see
from the error estimate (6.12) that the optimal polynomial can be realized if we can
choose a set of interpolating nodes x0, x1, . . . , xn such that the resulting polynomial
(x − x0)(x − x1) · · · (x − xn) on the right-hand side of (6.12) is minimized among
all polynomials in magnitude. An analysis of this optimization problem was first
made by the mathematician Chebyshev. The process leads naturally to a system of
polynomials called Chebyshev polynomials, which we will introduce below.
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Definition 6.2 (Chebyshev polynomials). The Chebyshev polynomials are defined
recursively as follows:

T0(x) = 1, T1(x) = x,

and for n ≥ 1,

Tn+1(x) = 2xTn(x)− Tn−1(x).

One obtains from the definition

T2(x) = 2x2 − 1,

T3(x) = 4x3 − 3x,

T4(x) = 8x4 − 8x2 + 1,

T5(x) = 16x5 − 20x3 + 5x,

T6(x) = 32x6 − 48x4 + 18x2 − 1,

and it is easy to see that the leading coefficient of Tk(x) is 2k−1.

Theorem 6.6. For x in the interval [−1, 1], the Chebyshev polynomials have the
following closed forms for n ≥ 0,

Tn(x) = cos(n cos−1 x) for − 1 ≤ x ≤ 1.

Proof. Recall the formula

cos(A+B) = cosA cosB − sinA sinB.

So we obtain

cos[(n+ 1)θ] = cos θ cos(nθ)− sin θ sin(nθ),

cos[(n− 1)θ] = cos θ cos(nθ) + sin θ sin(nθ),

adding them up, we have

cos[(n+ 1)θ] = 2 cos θ cos(nθ)− cos[(n− 1)θ].

Now let θ = cos−1 x so that x = cos θ. We see from the above relation that the
function

fn(x) = cos(n cos−1 x)

satisfies the following system:

f0(x) = 1, f1(x) = x,

and for n ≥ 1,

fn+1(x) = 2x fn(x)− fn−1(x).

So we have fn = Tn for all n.
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Immediately from the above closed form, we infer that

• |Tn(x)| ≤ 1 for −1 ≤ x ≤ 1,

• Tn
(

cos jπ
n

)
= (−1)j for 0 ≤ j ≤ n,

• Tn
(

cos 2j−1
2n

π
)

= 0 for 0 ≤ j ≤ n.

Definition 6.3 (Monic polynomial). A polynomial p(x) = anx
n + · · · + a1x + a0 is

called monic if an = 1, i.e., the coefficient of the term of highest order is one.

We see that for Tn(x) the term of highest order has a coefficient of 2n−1 for n > 0.

Therefore T̂n(x) = 21−nTn(x) is a monic polynomial for all n ≥ 1. The following
result shows that monic Chebyshev polynomials are optimal in some sense.

Lemma 6.1. If p is a monic polynomial of degree k, then

‖p‖∞ = max
−1≤x≤1

|p(x)| ≥ 21−k. (6.13)

Equality is achieve if and only if p = T̂k.

Proof. For (6.13) we prove by contradiction. Suppose that

|p(x)| < 21−k for |x| ≤ 1.

Let xj = cos(jπ/k), and consider the difference q(x) = T̂k(x) − p(x), noting that as

both p and T̂k are monic polynomials of degree k, the difference q(x) = T̂k(x)− p(x)
must have a degree at most k − 1. Then

(−1)jp(xj) ≤ |p(xj)| < 21−k = (−1)jT̂k(xj).

Consequently,

(−1)j[T̂k(xj)− p(xj)] > 0 for 0 ≤ j ≤ k.

This shows that the polynomial q(x) = T̂k(x)− p(x) oscillates in sign k + 1 times on
the interval [−1, 1]. Therefore it must have at least k roots in (−1, 1). But this is
contradicts that condition that q(x) has degree at most k − 1.

Finally, since T̂k(x) = 21−kTk(x) and maxx∈[−1,1] |Tk(x)| = 1, we obtain ‖T̂k‖∞ =
21−k.

We now return to the problem of choosing a set of interpolating nodes x0, x1, . . . , xn,
such that the right-hand side (6.12) is minimized among all polynomials in magnitude.
Using the interpolation error estimate (6.12), we can deduce that

max
|x|≤1
|f(x)− p(x)| ≤ 1

(n+ 1)!
max
|x|≤1
|f (n+1)(x)|max

|x|≤1
|(x− x0)(x− x1) · · · (x− xn)|.
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But by the property (6.13) of monic functions, we know

max
|x|≤1
|(x− x0)(x− x1) · · · (x− xn)| ≥ 2−n = ‖T̂n+1(x)‖∞.

Thus, if we choose the nodes as the roots of Tn+1, namely

xi = cos
( 2i− 1

2n+ 2
π
)
, i = 1, 2, . . . , n+ 1, (6.14)

so that

T̂n+1(x) = (x− x0)(x− x1) · · · (x− xn),

then we have the following result.

Theorem 6.7. If we choose the (n + 1) interpolating nodes x0, x1, . . . , xn to be the
roots of the Chebyshev polynomial Tn+1, i.e., (6.14), then the error of the resulting
interpolating polynomial for a given function f(x) is minimized and can be estimated
by

|f(x)− p(x)| ≤ 1

2n(n+ 1)!
max
|t|≤1
|fn+1(t)| for any x ∈ [−1, 1].

For arbitrary interval [a, b] with a 6= −1 and b 6= 1, we can use a linear transfor-
mation l : [−1, 1] → [a, b], l(x) = 1

2
(b − a) + 1

2
(b + a)x and compute the Chebyshev

points {xk}nk=0 in the interval [a, b].

6.6 Hermite’s interpolation

Given the following set of observation data regarding f and its derivative f ′ at points
x0, x1, . . . , xn with xi 6= xj for i 6= j,

x x0 x1 x2 · · · xn
f(x) f0 f1 f2 · · · fn
f ′(x) f ′0 f ′1 f ′2 · · · f ′n

we would like to see if it is possible to determine a polynomial p(x) of degree ≤ 2n+1
such that

p(xi) = fi and p′(xi) = f ′i for i = 0, 1, . . . , n. (6.15)

Below we describe two methods to construct such a polynomial. The first is based
on the Lagrange interpolation, and the second is based on the Newton interpolation.
It turns out that both methods are equivalent12.

12See page 56 of M.J.D. Powell, Approximation Theory and Methods, Cambridge University Press,
1981
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6.6.1 Lagrange form

At the heart of the Lagrange interpolation method we find special polynomials ui(x)
such that

ui(xj) = δij

and so when interpolating data points (xi, fi)0≤i≤n we can use the polynomial

p(x) =
n∑
i=0

fiui(x).

To deal with the additional data points from the derivatives, we can try

p(x) =
n∑
i=0

fiui(x) +
n∑
i=0

f ′ivi(x),

where {
ui(xj) = δij,

u′i(xj) = 0,

{
vi(xj) = 0,

v′i(xj) = δij.

Let l0(x), l1(x), . . . , ln(x) be the Lagrange basic functions in (6.6) associated with the
set of nodal points x0, x1, . . . , xn. Then, observe that

l2i (xj) = δij, but (l2i )
′(xj) 6= 0.

Therefore, we try

ui = (aix+ bi)l
2
i (x).

Plugging in x = xj yields ui(xj) = 0 if i 6= j. Meanwhile if x = xi we have

ui(xi) = aixi + bi = 1. (6.16)

Taking the derivative gives

u′i(x) = ail
2
i (x) + 2(aix+ bi)li(x)l′i(x).

For x = xj using li(xj) = 0 if i 6= j gives u′i(xj) = 0. Meanwhile if x = xi we require

u′i(xi) = ai + 2(aixi + bi)l
′
i(xi) = 0. (6.17)

Solving the two equations (6.16) and (6.17) leads to

bi = 1− aixi, ai + 2l′i(xi) = 0, ⇒ ai = −2l′i(xi), bi = 1 + 2xil
′
i(xi).

Hence, we have

ui(x) =
(

1− 2l′i(xi)(x− xi)
)
l2i (x).

In a similar way, we can derive

vi(x) = (x− xi)l2i (x).

One can easily show that
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1. ui(x) and vi(x) are all polynomials of degree 2n+ 1;

2. ui(xj) = δij, and vi(xj) = 0 for any i, j;

3. u′i(xj) = 0, and v′i(xj) = δij for any i, j.

Using these results, we can directly verify that the following polynomial

H2n+1(x) = H(x) =
n∑
i=0

fi ui(x) +
n∑
i=0

f ′i vi(x) (6.18)

is a polynomial of degree ≤ 2n+ 1 such that all the conditions in (6.15) are satisfied.
This polynomial is called the Hermite’s interpolation, and satisfies the following
error estimate.

Theorem 6.8. Suppose f ∈ C2n+2[a, b], and H(x) is its Hermite’s interpolation at
the n + 1 distinct points: a = x0 < x1 < x2 < · · · < xn−1 < xn = b such that all the
conditions in (6.15) are satisfied. Then the following error estimate holds for some
ξ ∈ (a, b):

f(x)−H(x) =
f (2n+2)(ξ)

(2n+ 2)!
(x− x0)2(x− x1)2 · · · (x− xn)2. (6.19)

Proof. To prove (6.19), we fix a point x ∈ (a, b). If x is a node, i.e., x = xi for some
i = 0, . . . , n, the result (6.19) holds clearly. So we assume that x is not a node. Let

w(t) = f(t)−H(t)− α (t− x0)2(t− x1)2 · · · (t− xn)2︸ ︷︷ ︸
=:φ(t)

where α is a constant such that w(x) = 0. The theorem is proved once we identify
the constant α. One can easily see that w(t) has at least n + 2 zeros in (a, b):
x, x0, x1, . . . , xn. By Rolle’s theorem, w′(t) has at least n+1 zeros in (a, b). But w′(x)
also vanishes at all the nodal points by construction of the Hermite’s interpolation.
So w′(t) has at least 2n+ 2 zeros in (a, b). Recursively using the Rolle’s theorem, we
know that w(2n+2)(t) has some zero ξ ∈ (a, b), that is,

0 = w(2n+2)(ξ) = f (2n+2)(ξ)−H(2n+2)(ξ)− αφ(2n+2)
n (ξ)

Since H is a polynomial of degree ≤ 2n+ 1, H(2n+2) = 0, and since φ has the leading
term t2n+2, it follows that φ(2n+2) = (2n + 2)!. Then, using these information we
obtain

0 = f (2n+2)(ξ)− α(2n+ 2)!.

This proves the desired error estimate (6.19).
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6.6.2 Newton form

While (6.18) is a clear expression depending on the Lagrange polynomials li and their
derivatives, it can be tedious to compute them even for small values of n. We now
turn to an alternative method using Newton’s interpolation with divided difference.
The question is how to build a divided difference table from (6.6) now that we have
an extra row of data. Consider a new sequence z0, . . . , z2n+1 by

z2i = z2i+1 = xi for i = 0, . . . , n.

We then construct the divided difference table in a form that uses z0, . . . , z2n+1. Note
that since z2i = z2i+1 = xi for each i, we cannot define f [z2i, z2i+1] by the divided
difference formula. However, we assume, based on the divided difference formula, that
a reasonable substitution in this situation is f [z2i, z2i+1] = f ′(z2i) = f ′(xi). Hence, we
use the entries f ′(x0), f

′(x1), . . . , f
′(xn) in place of f [z0, z1], f [z2, z3], . . . , f [z2n, z2n+1],

while the remaining divided differences are produced as usual. For example, the
following table shows the entries for the first three divided difference columns for
three points x0, x1, x2:

x 0th 1st 2nd 3rd
z0 = x0 f [z0] = f(x0)

f [z0, z1] = f ′(x0)
z1 = x0 f [z1] = f(x0) f [z0, z1, z2]

f [z1, z2] = f [x0, x1] f [z0, z1, z2, z3]
z2 = x1 f [z2] = f(x1) f [z1, z2, z3]

f [z2, z3] = f ′(x1) f [z1, z2, z3, z4]
z3 = x1 f [z3] = f(x1) f [z2, z3, z4]

f [z3, z4] = f [x1, x2] f [z2, z3, z4, z5]
z4 = x2 f [z4] = f(x2) f [z3, z4, z5]

f [z4, z5] = f ′(x2)
z5 = x2 f [z5] = f(x2)

We see that the rest of the table is generated in the same manner as for the Newton’s
divided difference table. Then, the Hermite’s interpolation in divided difference form
is

H2n+1(x) = H(x) = f [z0] +
2n+1∑
k=1

f [z0, · · · , zk](x− z0)(x− z1) · · · (x− zk−1).

Example 6.4. Consider the data

x x0 x1
f(x) 1 2
f ′(x) 0 1

The table of divided differences looks like
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x 0th 1st 2nd 3rd
z0 = 0 f [z0] = 1

f [z0, z1] = f ′(x0) = 0
z1 = 0 f [z1] = 1 f [z0, z1, z2] = 1

f [z1, z2] = f [x0, x1] = 1 f [z0, z1, z2, z3] = −1
z2 = 1 f [z2] = 2 f [z1, z2, z3] = 0

f [z2, z3] = f ′(x1) = 1
z3 = 1 f [z3] = 2

and we obtain

H3(x) = 1 + x2 − x2(x− 1) = 1− x3 + 2x2.

Exercise. For the data

x x0 = −1 x1 = 0 x2 = 1
f(x) 2 1 2
f ′(x) −4 0 4

Show that Hermit’s interpolation gives

H5(x) = 1 + x4.
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7 Numerical integration

Approximations of integrals are widely encountered in real applications. Many impor-
tant physical quantities are represented by the integrals, e.g., mass, concentrations,
heat flux, heat sources and so on. Furthermore, many partial differential equations
are solved using a so-called weak formulation that involves integrals.

In this section we shall discuss how to approximate a given integral on an interval.
The approximation of integrals in higher dimensions can be reduced to the integrals
on many intervals. Given a function f(x) on a interval [a, b], we discuss how to
approximate the integral ∫ b

a

f(x) dx

based on quadrature rules.

7.1 Simple rules

Recall that the integral ∫ b

a

f(x) dx

is the area enclosed by the curve y = f(x), and the lines x = a, x = b. When a
is close to b, one may approximate the area by the area of some simple geometric
domains. If we use the area of the rectangle with the base [a, b] and height f(a) or
f(b), then we get the Rectangular quadrature rules:∫ b

a

f(x) dx ≈ (b− a) f(a) or

∫ b

a

f(x)dx ≈ (b− a) f(b). (7.1)

A more accurate rule is to approximate the integral by the area of the trapezoid
formed by the base [a, b], the lines x = a, x = b and the line connecting (a, f(a)) to
(b, f(b)). This leads immediately to the Trapezoidal rule:∫ b

a

f(x)dx ≈ b− a
2

(f(a) + f(b)). (7.2)

To see how good are these approximations, we compute an error estimate. For
the rectangular rule, suppose f : [a, b] → R satisfies maxx∈[a,b] |f ′(x)| ≤ K for some
K > 0. Then,∣∣∣∣∫ b

a

f(x) dx− (b− a)f(a)

∣∣∣∣ =

∣∣∣∣∫ b

a

f(x)− f(a) dx

∣∣∣∣ =

∣∣∣∣∫ b

a

f ′(ξ)(x− a) dx

∣∣∣∣
≤ K

∫ b

a

x− a dx =
K

2
(b− a)2,
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and analogous error estimate also holds if we use the other rectangular rule (b−a)f(b)
instead. Notice that if f(x) is a constant function, then the rectangular rule is exact,
in the sense that∫ b

a

f(x) dx = (b− a)f(a) for all constant functions f : [a, b]→ R.

For the trapezoidal rule, we first consider the Lagrange interpolation of f(x) at two
points x0 = a and x1 = b:

L(x) =
x− b
a− b

f(a) +
x− a
b− a

f(b).

Then we have ∫ b

a

L(x) dx =

∫ b

a

(x− b
a− b

f(a) +
x− a
b− a

f(b)
)
dx

=
f(a)

a− b
·
(
− 1

2

)
(b− a)2 +

f(b)

b− a
· 1

2
(b− a)2

=
b− a

2
(f(a) + f(b)).

This is exactly the same as the trapezoidal rule. So the error of the trapezoidal rule
can be transfered to the error of the Lagrange interpolation:∫ b

a

f(x) dx− b− a
2

(f(a) + f(b)) =

∫ b

a

(f(x)− L(x)) dx

=
1

2

∫ b

a

f ′′(ξx)(x− a)(x− b) dx,

where we used (6.12) for the last equality. We see that for any linear polynomial, the
trapezoidal rule is exact. Furthermore, if f : [a, b] → R satisfies maxx∈[a,b] |f ′′(x)| ≤
K, then we obtain∣∣∣∣∫ b

a

f(x) dx− b− a
2

(f(a) + f(b))

∣∣∣∣ ≤ K

2

∣∣∣∣∫ b

a

(x− a)(x− a+ a− b) dx
∣∣∣∣

≤ K

12
(b− a)3.

(7.3)

7.2 Composite rules

In the error estimates for the rectangular rule and the trapezoidal rule, if the size
of the interval [a, b] is not small, then the upper bound on the error is not useful.
To derive a more accurate approximation, we can divide [a, b] into n equally-spaced
subintervals using the points

a = x0 < x1 < x2 < · · · < xn−1 < xn = b.
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Let h = b−a
n

be the length of each subinterval (or the mesh size), then we have

xi = a+ ih, i = 0, 1, . . . , n.

Now on each subinterval [xi−1, xi], we can approximate
∫ xi
xi−1

f(x)dx by the trapezoidal

rule with good accuracy, i.e.,∫ xi

xi−1

f(x) dx ≈ h

2
(f(xi−1) + f(xi)).

Then summing gives∫ b

a

f(x) dx =
n∑
i=1

∫ xi

xi−1

f(x) dx ≈
n∑
i=1

h

2
(f(xi−1) + f(xi)),

This leads to the composite trapezoidal rule, which is obtained by applying an
integration formula for a single interval to each subinterval of a partitioned interval:∫ b

a

f(x) dx ≈ h

(
f(x0)

2
+ f(x1) + f(x2) + · · ·+ f(xn−1) +

f(xn)

2

)
. (7.4)

To obtain an error estimate, we suppose f ∈ C2[a, b] with maxx∈[a,b] |f ′′(x)| ≤ K,
then∣∣∣∣∣
∫ b

a

f(x) dx−
n∑
i=1

h

2
(f(xi−1) + f(xi))

∣∣∣∣∣
=

∣∣∣∣∣
n∑
i=1

∫ xi

xi−1

f(x) dx− h

2
(f(xi−1) + f(xi))

∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

∫ xi

xi−1

f ′′(ξi)

2
(x− xi−1)(x− xi) dx

∣∣∣∣∣
≤

n∑
i=1

K

2

∣∣∣∣∫ xi

xi−1

(x− xi−1)(x− xi−1 + xi−1 − xi) dx
∣∣∣∣ =

n∑
i=1

K

12
(xi − xi−1)3

=
nh3K

12
=
K

12
(b− a)h2,

where nh = (b− a). This shows that if we take smaller and smaller mesh sizes h, the
error for the composite trapezoidal rule will tend to zero, but the cost is we have to
increase the number of function evaluations.

Example 7.1. Determine the mesh size h so that the error of the composite trape-
zoidal rule for computing the integral

∫ 1

0
sin(πx) dx is not bigger than 10−6.

Applying the error estimate∣∣∣∣∣
∫ 1

0

sin(πx) dx−
n∑
i=1

h

2
(sin(πxi−1) + sin(πxi))

∣∣∣∣∣ ≤ π2

12
h2 ≤ 10−6

implies that h must be not bigger than 2
√
3

π
10−3. Hence, roughly 1,000 subregions and

1,000 function evaluations are needed.
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7.3 Newton–Cotes quadrature rule

The composite trapezoidal rule is exact for linear polynomials, and we are interested in
deriving quadrature rules that are exact for higher order polynomials. When defined
on an equally-spaced set of points, these leads to the Newton–Cotes quadrature
rules.

For an interval [a, b], let

a = x0 < x1 < · · · < xn = b, xi = a+ ih, h =
b− a
n

,

denote an equally-spaced partition. We want to find constants α0, α1, . . . , αn such
that for any polynomial p(x) of degree ≤ n, we have∫ b

a

p(x) dx = α0p(x0) + α1p(x1) + · · ·+ αnp(xn). (7.5)

Recalling the Lagrange interpolation for the data (x0, p(x0)), . . . , (xn, p(xn)), where

Ln(x) = p(x0)l0(x) + · · ·+ p(xn)ln(x), li(x) =
n∏

j 6=i,j=0

x− xj
xi − xj

.

Since both Ln(x) and p(x) are polynomials of degree n that agrees at n + 1 points,
by the uniqueness Theorem 6.3, p(x) = Ln(x). Hence,∫ b

a

p(x) dx =

∫ b

a

p(x0)l0(x) + · · ·+ p(xn)ln(x) dx =
n∑
i=0

p(xi)

∫ b

a

li(x) dx.

This means we should choose

αi =

∫ b

a

li(x) dx, i = 0, 1, . . . , n, (7.6)

and motivates us to consider the Newton–Cotes rule for any function f :∫ b

a

f(x) dx ≈
n∑
i=0

αif(xi), αi =

∫ b

a

li(x) dx. (7.7)

It is worthwhile to investigate the special cases of n = 1 and n = 2. For n = 1,
let x0 = a and x1 = b, then

α0 =

∫ b

a

l0(x) dx =

∫ b

a

x− b
a− b

dx =
1

2
(b− a),

α1 =

∫ b

a

l1(x) dx =

∫ b

a

x− a
b− a

dx =
1

2
(b− a),
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and so we get the Newton–Cotes rule for n = 1:∫ b

a

f(x)dx ≈ b− a
2

(f(a) + f(b)),

which is exactly the trapezoidal rule (7.2).
For n = 2, let x0 = a, x1 = 1

2
(a+ b) and x2 = b, then if we set h = b− a we get

α0 =

∫ b

a

l0(x) dx =

∫ b

a

(x− x1)(x− b)
(a− x1)(a− b)

dx

=
2

(b− a)2

∫ b

a

(x− b+ h/2)(x− b) dx =
1

6
(b− a),

α1 =

∫ b

a

l1(x) dx =

∫ b

a

(x− a)(x− b)
(x1 − a)(x1 − b)

dx

= − 4

(b− a)2

∫ b

a

(x− a)(x− a+ a− b) dx =
4

6
(b− a),

α2 =

∫ b

a

l2(x) dx =

∫ b

a

(x− a)(x− x1)
(b− a)(b− x1)

dx

=
1

6
(b− a),

and so we get the Newton–Cotes rule for n = 2:∫ b

a

f(x) dx ≈ b− a
6

{
f(a) + 4f((a+ b)/2) + f(b)

}
,

which is called the Simpson’s rule.
One can easily see that it is very technical and lengthy to compute the coefficients

αi of the Newton–Cotes rules using (7.6) for larger n. We now give an alternative
derivation of the trapezoidal rule and Simpson’s rule based on the direct definition of
the Newton–Cotes rule

The quadrature rule (7.5) holds for all polynomials of degree ≤ n.

When n = 1, we need two points x0 and x1. Let us consider x0 = a and x1 = b.
As the quadrature rule ∫ b

a

f(x) dx = α0f(a) + α1f(b)

holds for all polynomials of degree n ≤ 1, we try with f(x) = 1 to obtain

b− a = α0 + α1,

and with f(x) = x− a to obtain

1

2
(b− a)2 = α1(b− a).
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This implies that

α0 =
b− a

2
, α1 =

b− a
2

and yields the trapezoidal rule:∫ b

a

f(x) dx ≈ b− a
2

(f(a) + f(b)).

When n = 2, we need three points x0, x1 and x2. Let us consider that x0 = a,
x1 = (a+ b)/2 and x2 = b, Then using the fact that the formula∫ b

a

f(x) dx = α0f(x0) + α1f(x1) + α2f(x2)

is exact for all polynomials of degree n ≤ 2, we obtain

(b− a) =

∫ b

a

1 dx = α0 + α1 + α2,

1

2
(b− a)2 =

∫ b

a

(x− a) dx = α1
b− a

2
+ α2(b− a),

−1

6
(b− a)3 =

∫ b

a

(x− a)(x− b) dx = −α1
(b− a)2

4

by taking

f(x) = 1, f(x) = x− a, f(x) = (x− a)(x− b).

Solving the system, we derive the Simpson’s rule:∫ b

a

f(x) dx ≈ b− a
6

{
f(a) + 4f((a+ b)/2) + f(b)

}
.

7.3.1 Simpson’s rule

Simpson’s rule is one of the most important quadrature rules due to its nice properties.
First we give the error estimate for f : [a, b]→ R with maxx∈[a,b] |f (4)(x)| ≤ K. Let

F (x) =

∫ x

a

f(t) dt,

h = b − a and x̄ = (a + b)/2. Then we expand F (b) at x = a by Taylor series up to
the 5th order to obtain:

F (b) = F (a) + hF ′(a) +
h2

2
F ′′(a) +

h3

6
F ′′′(a) +

h4

24
F (4)(a) +

h5

120
F (5)(ξ)

= h f(a) +
h2

2
f ′(a) +

h3

6
f ′′(a) +

h4

24
f (3)(a) +

h5

120
f (4)(ξ).

(7.8)
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On the other hand, we can expand each term on the right-hand side of Simpson’s rule
to get

f(a) = f(a), (7.9)

f(x̄) = f(a) +
h

2
f ′(a) +

(h
2

)2f ′′(a)

2
+
(h

2

)3f ′′′(a)

6
+
(h

2

)4f (4)(µ1)

24
, (7.10)

f(b) = f(a) + hf ′(a) +
h2

2
f ′′(a) +

h3

6
f ′′′(a) +

h4

24
f (4)(µ2), (7.11)

for some µ1 ∈ (a, x̄) and µ2 ∈ (a, b). Using the relations (7.9)-(7.11), we deduce
(recalling h = b− a)

b− a
6

{
f(a) + 4f(x̄) + f(b)

}
= hf(a) +

h2

2
f ′(a) +

h3

6
f ′′(a) +

h4

24
f ′′′(a)

+
h5

576
(f (4)(µ1) + 4f (4)(µ2)) .

Subtracting this from (7.8) yields∫ b

a

f(x) dx− b− a
6

{
f(a) + 4f(x̄) + f(b)

}
=

h5

120
f (4)(ξ)− h5

576
(f (4)(µ1) + 4f (4)(µ2)).

(7.12)

This shows that Simpson’s rule is exact for polynomials of degree ≤ 3, and by the
assumption maxx∈[a,b] |f (4)(x)| ≤ K, we obtain∣∣∣∣∫ b

a

f(x) dx− b− a
6

{
f(a) + 4f(x̄) + f(b)

}∣∣∣∣ ≤ 49

2880
Kh5 =

49

2880
K(b− a)5.

This may not be such a useful error estimate if the interval [a, b] is not small, and so
we divide [a, b] into equally-spaces subintervals

a = x0 < x1 < · · · < xn−1 < xn = b , xi = a+ ih, h =
b− a
n

,

and use the Simpson’s rule on each subinterval. This gives the following composite
Simpson’s rule:∫ b

a

f(x) dx =
n∑
i=1

∫ xi

xi−1

f(x) dx

=

∫ x1

x0

f(x) dx+

∫ x2

x1

f(x)dx+ · · ·+
∫ xn

xn−1

f(x) dx

≈ h

6

n∑
i=1

{
f(xi−1) + 4f

(xi−1 + xi
2

)
+ f(xi)

}
.
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The error estimate of the composite Simpson rule is a direct application of the error
estimate of the Simpson rule:∣∣∣∣∣

∫ b

a

f(x) dx− h

6

n∑
i=1

{
f(xi−1) + 4f

(xi−1 + xi
2

)
+ f(xi)

}∣∣∣∣∣
=

∣∣∣∣∣
n∑
i=1

[ ∫ xi

xi−1
f(x) dx− h

6

{
f(xi−1) + 4f

(xi−1 + xi
2

)
+ f(xi)

}]∣∣∣∣∣
≤

n∑
i=1

49

2880
K(xi − xi−1)5 =

49K

2880
nh5 =

49K

2880
(b− a)h4.

(7.13)

7.4 Gaussian quadrature rule

A key requirement of the Newton–Cote rule is that the nodal points {x0, . . . , xn} form
an equally-spaced partition of the interval [a, b], and that∫ b

a

p(x) dx =
n∑
i=0

αip(xi) for all polynomials of degree ≤ n.

In fact, there exist quadrature rules that have better accuracy, namely with the same
number n+ 1 of nodal points, the integral approximation is exact for all polynomials
of degree ≤ 2n + 1. This comes from relaxing the condition that x0, . . . , xn form an
equally-spaced partition of [a, b], and the subsequent quadrature rules are known
as Gaussian quadrature rules.

We begin with an example with n = 1. For simplicity we take [a, b] = [−1, 1], and
suppose we want ∫ 1

−1
f(x) dx = α0f(x0) + α1f(x1)

to hold for all polynomials of degree ≤ 2n + 1 = 3, then for f(x) = 1, f(x) = x,
f(x) = x2 and f(x) = x3, we must have∫ 1

−1
1 dx = 2 = α0 + α1, (7.14)∫ 1

−1
x dx = 0 = α0x0 + α1x1, (7.15)∫ 1

−1
x2 dx =

2

2
= α0x

2
0 + α1x

2
1, (7.16)∫ 1

−1
x3 dx = 0 = α0x

3
0 + α1x

3
1. (7.17)
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These are four equations for four unknowns (α0, α1, x0, x1), but they form a nonlinear
system of equations. To solve this, let us recall that

α0 =

∫ 1

−1
l0(x) dx =

∫ 1

−1

x− x1
x0 − x1

dx =
2x1

x1 − x0
,

α1 =

∫ 1

−1
l1(x) dx =

∫ 1

−1

x− x0
x1 − x0

dx = − 2x0
x1 − x0

.

Adding these gives α0 + α1 = 2, which is (7.14). From (7.15) we get

α0x0 + α1x1 = 2(x1 + x0) = 0 ⇒ x0 = −x1,

and from (7.17) we get

α0x
3
0 + α1x

3
1 = (α1 − α0)x

3
1 = 0 ⇒ α0 = α1.

Hence, by (7.16) it holds that

α0x
2
0 + α1x

2
1 = 2α0x

2
1 =

4x31
2x1

= 2x21 =
2

3
⇒ x1 =

1√
3
.

This implies

x0 = − 1√
3
, x1 =

1√
3
, α0 = α1 = 1,

and leads to the 2 point Gaussian quadrature rule:∫ 1

−1
f(x) dx ≈ f

(−1√
3

)
+ f
( 1√

3

)
. (7.18)

By the above calculations, we see that this is exact for all polynomials of degree ≤ 3.
Furthermore, we immediately see that the partition

−1 = a < x0 =
−1√

3
< x1 =

1√
3
< b = 1

is not equally-spaced!
Unfortuately, the amount of effort needed to compute the points (x0, . . . , xn) and

coefficients (α0, · · · , αn) for Gaussian quadrature rules increases drastically as n in-
creases. Take for example n = 2, then a 3 point Gaussian quadrature rule
is ∫ 1

−1
f(x) dx ≈ α0f(x0) + α1f(x1) + α2f(x2),

such that for any polynomials p(x) of degree ≤ 2n+ 1 = 5,∫ 1

−1
p(x) dx = α0p(x0) + α1p(x1) + α2p(x2).
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Proceeding as before, we take p(x) = 1, p(x) = x, p(x) = x2, p(x) = x3, p(x) = x4

and p(x) = x5 to obtain a nonlinear system of six equations for six unknowns:

α0 + α1 + α2 = 2,

α0x0 + α1x1 + α2x2 = 0,

α0x
2
0 + α1x

2
1 + α2x

2
2 =

2

3
,

α0x
3
0 + α1x

3
1 + α2x

3
2 = 0,

α0x
4
0 + α1x

4
1 + α2x

4
2 =

2

5
,

α0x
5
0 + α1x

5
1 + α2x

5
2 = 0.

One can try to solve this nonlinear system with Newton’s method or steepest descent,
but suppose we choose the quadrature points x0, . . . , xn as roots of some polynomial
Qn+1, then we can immediately determine the coefficients α0, . . . , αn by the definition

αi =

∫ 1

−1
li(x) dx.

It is clear that for different choice of the polynomial Qn+1, we get different roots and
hence different nodal points, which leads to different quadrature rules. We shall study
the case where Qn+1 is part of the so-called Legendre polynomials.

7.4.1 Gauss–Legendre quadrature

Definition 7.1 (Legendre polynomials). The Legendre polynomials Pn(x) is de-
fined recursively by

P0(x) = 1, P1(x) = x, (n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x).

For example,

P2(x) =
1

2
(3x2 − 1), P3(x) =

1

2
(5x3 − 3x), · · · .

Then the method for deriving the Gauss–Legendre quadrature rules is as follows:

1. Let {x0, . . . , xn} be the roots of Pn+1(x).

2. Set

αi =

∫ 1

−1
li(x) dx =

∫ 1

−1

n∏
j 6=i,j=0

x− xj
xi − xj

dx.

3. Then, the Gauss–Legendre quadrature rule is∫ 1

−1
f(x) dx ≈

n∑
i=0

αif(xi).
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We now provide some facts about the Legendre polynomials:

(a) Pn(x) is the solution to the Legendre differential equation:

d

dx

(
(1− x2) d

dx
Pn(x)

)
+ n(n+ 1)Pn(x) = 0.

(b) Rodrigue’s formula:

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n.

(c) Orthogonality: ∫ 1

−1
Pm(x)Pn(x) dx = 0 if m 6= n.

(d) Basis: any polynomial q(x) of degree n can be expressed uniquely as

q(x) = β0P0(x) + β1P1(x) + · · ·+ βnPn(x),

for constants β0, . . . , βn.

(e) Combining properties (c) and (d) gives∫ 1

−1
q(x)Pn+1(x) dx = 0 for any polynomial q of degree ≤ n.

We give a simple proof of the orthogonality property (c): Take the Legendre differen-
tial equation for Pn and multiply by Pm, and take the Legendre differential equation
for Pm and multiply by Pn, which gives

[((1− x2)P ′n(x))′ + n(n+ 1)Pn(x)]Pm(x) = 0,

[((1− x2)P ′m(x))′ +m(m+ 1)Pm(x)]Pn(x) = 0.

Subtracting one from the other and using the relation

((1− x2)P ′n(x))′Pm(x)− ((1− x2)P ′m(x))′Pn(x) = ((1− x2)(P ′nPm − P ′mPn))′,

we get

((1− x2)(P ′nPm − P ′mPn))′ + (n(n+ 1)−m(m+ 1))PnPm = 0.

Integrating over (−1, 1) yields

[(1− x2)(P ′nPm − P ′mPn)]1−1︸ ︷︷ ︸
=0

+ (n(n+ 1)−m(m+ 1))︸ ︷︷ ︸
6=0

∫ 1

−1
Pn(x)Pm(x) dx = 0.

With these properties, we have the following result.
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Theorem 7.1. The Gauss–Legendre quadrature rule defined above is exact for any
polynomials of degree ≤ 2n+ 1.

Proof. Let p(x) be a polynomial of degree ≤ 2n + 1 and as the monic (n + 1)th
Legendre polynomial has degree n+1, we can find (by factorization) two polynomials
q(x) and r(x) of degree n such that p(x) = q(x)Pn+1(x) + r(x). Then, as {x0, . . . , xn}
are the roots of Pn+1(x), it holds that

p(xi) = q(xi)Pn+1(xi) + r(xi) = r(xi).

Since r is a polynomial of degree n, by Lagrange interpolation,

r(x) =
n∑
i=0

r(xi)li(x) =
n∑
i=0

p(xi)li(x).

Hence, ∫ 1

−1
p(x) dx =

∫ 1

−1
q(x)Pn+1(x) dx+

∫ 1

−1
r(x) dx

=

∫ 1

−1
r(x) dx =

∫ 1

−1

n∑
i=0

p(xi)li(x) dx =
n∑
i=0

αip(xi),

where in the above we used property (e) and the fact that q is a polynomial of degree
n.

We now compute the 2 point and 3 point Gauss–Legendere quadrature rule fol-
lowing the above procedure. First, suppose we have 2 points x0 and x1, i.e., the case
n = 1. Then, we should take them to be the roots of the second Legendre polynomial
P2(x) = 1

2
(3x2 − 1), i.e.,

x0 = − 1√
3
, x1 =

1√
3
.

Then, computing the coefficients α0 and α1 yields

α0 =
2x1

x1 − x0
= 1, α1 =

−2x0
x1 − x0

= 1,

and so the 2 point Gauss–Legendre quadrature rule is∫ 1

−1
f(x) dx ≈ f

(−1√
3

)
+ f
( 1√

3

)
,

which is exactly the 2 point Gaussian quadrature rule (7.18). For the case n = 2, we
have three points x0, x1 and x2, chosen to be the roots of P3(x) = 1

2
(5x3 − 3x), and

so

x0 = −
√

3

5
, x1 = 0, x2 =

√
3

5
.
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For the coefficients, we get

α0 =

∫ 1

−1

(x− x1)(x− x2)
(x0 − x1)(x0 − x2)

dx =
2/3 + 2x1x2

(x0 − x1)(x0 − x2)
=

5

9
,

α1 =

∫ 1

−1

(x− x0)(x− x2)
(x1 − x0)(x1 − x2)

dx =
2/3 + 2x0x2

(x1 − x0)(x1 − x2)
=

8

9
,

α2 =

∫ 1

−1

(x− x0)(x− x1)
(x2 − x0)(x2 − x1)

dx =
2/3 + 2x0x1

(x2 − x0)(x2 − x1)
=

5

9
.

Hence, the 3 point Gauss–Legendre quadrature rule is∫ 1

−1
f(x) dx ≈ 5

9
f
(
−
√

3

5

)
+

8

9
f(0) +

5

9
f
(√3

5

)
.

It remain to obtain an error estimate for the Gauss–Legendre quadrature rule.

7.4.2 Error estimate

Theorem 7.2. Let {x0, . . . , xn} be the roots of Pn+1(x), the (n+ 1)th Legendre poly-
nomial, and define

αi =

∫ 1

−1
li(x) dx =

∫ 1

−1

n∏
j 6=i,j=0

x− xj
xi − xj

dx for i = 0, . . . , n.

Then, αi > 0 and if f ∈ C2n+2[−1, 1] with maxx∈[−1,1] |f (2n+2)(x)| ≤ K for some
K > 0, we have∣∣∣∣∣

∫ 1

−1
f(x) dx−

n∑
i=0

αif(xi)

∣∣∣∣∣ ≤ K

(2n+ 2)!

∫ 1

−1
(x− x0)2 · · · (x− xn)2 dx.

Proof. Fix i ∈ {0, . . . , n}, and consider the polynomial

q(x) = (li(x))2 =
n∏

j 6=i,j=0

(x− xj)2

(xi − xj)2
.

Then, q is a polynomial of degree 2n and

q(xk) = (li(xk))
2 =

{
1 if k = i,

0 if k 6= i.

Since q is non-negative and only zero at x0, . . . , xi−1, xi+1, . . . , xn, the integral of q
over (−1, 1) is strictly positive, and so

0 <

∫ 1

−1
q(x) dx =

n∑
k=0

αkq(xk) = αi,
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where the middle equality is due to the exactness of the Gauss–Legendre quadrature
rule for polynomials of degree ≤ 2n + 1. For the error estimate, we consider the
Hermite’s interpolation H2n+1(x) of degree 2n+ 1 such that

H2n+1(xi) = f(xi), H ′2n+1(xi) = f ′(xi) for i = 0, . . . , n.

Then, by Theorem 6.8 there exists ξ ∈ (−1, 1) such that

f(x)−H2n+1(x) =
f (2n+2)(ξ)

(2n+ 2)!
(x− x0)2 · · · (x− xn)2.

As H2n+1(x) is of degree 2n + 1, the Gauss–Legendre quadrature rule is exact and
gives ∫ 1

−1
H2n+1(x) dx =

n∑
i=0

αiH2n+1(xi) =
n∑
i=0

αif(xi).

Hence, ∣∣∣∣∣
∫ 1

−1
f(x) dx−

n∑
i=0

αif(xi)

∣∣∣∣∣ =

∣∣∣∣∫ 1

−1
f(x)−H2n+1(x) dx

∣∣∣∣
=

∣∣∣∣∫ 1

−1

f (2n+2)(ξ)

(2n+ 2)!
(x− x0)2 · · · (x− xn)2 dx

∣∣∣∣
≤ K

(2n+ 2)!

∫ 1

−1
(x− x0)2 · · · (x− xn)2 dx.

Example 7.2. Let f : [−1, 1] → R be a function with maxx∈[−1,1] |f (4)(x)| ≤ 1, then
for the 2 point Gauss–Legendre quadrature rule we have∫ 1

−1
f(x) dx = f

(−1√
3

)
+ f
( 1√

3

)
.

Then, from above, the error is∣∣∣∣∫ 1

−1
f(x) dx−

(
f
(−1√

3

)
+ f
( 1√

3

))∣∣∣∣ ≤ 1

4!

∫ 1

−1

(
x+

1√
3

)2(
x− 1√

3

)2
dx

=
1

24

∫ 1

−1

(
x2 − 1

3

)2
dx =

1

24

[x5
5
− 2

9
x3 +

x

9

]1
−1

=
1

135
.

7.4.3 Quadrature rule on arbitrary intervals

While the Gauss–Legendre quadrature rules are derived in the interval [−1, 1], for
any f : [a, b]→ R, we can use the linear transformation

y = h(x) =
a+ b

2
+
b− a

2
x,
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so that ∫ b

a

f(y) dy =

∫ 1

−1
f
(a+ b

2
+
b− a

2
x
)b− a

2
dx =:

∫ 1

−1
g(x) dx.

Then, the 2 point Gauss–Legendre quadrature rule is∫ b

a

f(x) dx ≈ b− a
2

(
f
(a+ b

2
− b− a

2
√

3

)
+ f
(a+ b

2
+
b− a
2
√

3

))
,

while the 3 point Gauss–Legendre quadrature rule is∫ b

a

f(x) dx

≈ b− a
2

(5

9
f
(a+ b

2
− (b− a)

√
3

2
√

5

)
+

8

9
f
(a+ b

2

)
+

5

9
f
(a+ b

2
+

(b− a)
√

3

2
√

5

))
.
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