MATH3230A - Numerical Analysis Exercises on Numerical Integration

1. Derive the Newton-Cotes rule for $\int_{0}^{1} f(x) d x$ based on the points $0,1 / 3,2 / 3$ and 1.
2. Obtain a Newton-Cotes rule for $\int_{0}^{1} f(x) d x$ that is exact for all polynomials of degree ≤ 4.

3 . Find the coefficients a_{0}, a_{1} such that

$$
\int_{0}^{1} f(x) d x \approx a_{0} f(0)+a_{1} f(1)
$$

is exact for functions of the form $f(x)=a e^{x}+b \cos (\pi x / 2)$.
4. Find the coefficients a_{0}, a_{1} such that

$$
\int_{0}^{2 \pi} f(x) d x=a_{0} f(0)+a_{1} f(\pi)
$$

is exact for all functions of the form $f(x)=a+b \cos x$.
5. Derive a formula for approximating

$$
\int_{1}^{3} f(x) d x
$$

in terms of $f(0), f(2)$ and $f(4)$ which is exact for all polynomials of degree ≤ 2.
6. For which class of polynomials is the quadrature rule

$$
\int_{0}^{2} x f(x) d x \approx a_{0} f(0)+a_{1} f(1)+a_{2} f(2)
$$

exact?
7. Write down a composite rectangular rule based on

$$
\int_{0}^{1} f(x) d x \approx f(1)
$$

8. Compute the error estimate for the following Newton-Cotes rules:
(a) $\int_{0}^{1} f(x) d x \approx a f(0)+b f(1 / 2)+c f(1)$;
(b) $\int_{0}^{1} f(x) d x \approx \alpha f(1 / 4)+\beta f(1 / 2)+\gamma f(3 / 4)$;
9. Examine whether there is a quadrature rule of the form

$$
\int_{0}^{1} f(x) d x \approx a\left(f\left(x_{0}\right)+f\left(x_{1}\right)\right)
$$

for some a, x_{0}, x_{1} that is exact for all polynomials of degree ≤ 2.
10. Determine the number of subintervals needed in order to approximate

$$
\int_{1}^{2} f(x) d x
$$

to an accuracy of 10^{-6} using the composite trapezoidal rule for
(a) $f(x)=x$;
(b) $f(x)=e^{-x}$;
(c) $f(x)=e^{-x^{2}}$.
11. Let $w:[a, b] \rightarrow(0, \infty)$ be a weight, and $f:[a, b] \rightarrow \mathbb{R}$. Given an equally-spaced partition of $[a, b]$ into n subintervals with points $a=x_{0}<x_{1}<\cdots<x_{n}=b$, identify the coefficients $\alpha_{0}, \ldots, \alpha_{n}$ for the quadrature rule

$$
\int_{a}^{b} w(x) f(x) d x \approx \sum_{i=0}^{n} \alpha_{i} f\left(x_{i}\right)
$$

so that it is exact for all polynomials of degree $\leq n$.
12. Derive the Gauss-Legendre quadrature rule with 4 nodal points in $[-1,1]$.
13. Find a Gauss-Legendre quadrature rule for

$$
\int_{-1}^{1} x f(x) d x \approx a_{0} f\left(x_{0}\right)+a_{1} f\left(x_{1}\right)
$$

that is exact for all polynomials of degree ≤ 3.
14. Repeat the above but now with $x^{2} f(x)$ as the integrand.

