MATH3230A - Numerical Analysis Exercises on Polynomial Interpolation

1. Find the polynomials of least degree that interpolate these set of points:
(a) $x_{0}=3, f\left(x_{0}\right)=5, x_{1}=7, f\left(x_{1}\right)=-1$;
(b) $x_{0}=3, f\left(x_{0}\right)=12, x_{1}=7, f\left(x_{1}\right)=146, x_{2}=1, f\left(x_{2}\right)=2$;
(c) $x_{0}=1.5, f\left(x_{0}\right)=0, x_{1}=2.7, f\left(x_{1}\right)=0, x_{2}=3.1, f\left(x_{2}\right)=0, x_{3}=-2.1$, $f\left(x_{3}\right)=1$;
2. Show that if $p(x)$ is a polynomial of degree $\leq n$ interpolating the function $f(x)$ at distinct points $x_{0}<x_{1}<\cdots<x_{n}$, then

$$
f(x)-p(x)=\sum_{i=0}^{n}\left[f(x)-f\left(x_{i}\right)\right] l_{i}(x) .
$$

3. Show that if g interpolates f at points x_{0}, \ldots, x_{n-1} and h interpolates f at x_{1}, \ldots, x_{n}, then

$$
g(x)+\frac{x_{0}-x}{x_{n}-x_{0}}(g(x)-h(x))
$$

interpolates f at x_{0}, \ldots, x_{n}.
4. Show that interpolating $f(x)=\cosh (x)$ with a polynomial $p(x)$ of degree 22 with 23 distinct points in $[-1,1]$ gives a relative error no greater than 5×10^{-16}.
5. Show that for the Chebyshev polynomial $T_{k}(x)$ for $x \geq 1$ can be expressed as

$$
T_{k}(x)=\cosh \left(k \cosh ^{-1}(x)\right) .
$$

6. Find the best upper bound on the error of interpolation $f(x)=e^{x-1}$ with a polynomial of degree 12 using 13 nodes in $[-1,1]$.
7. Compute the table of divided differences for the following data set:
(a) $x \in\{0,1,2,3,4\}, f(x) \in\{2,1,2,-7,10\} ;$
(b) $x \in\{4,2,0,3\}, f(x) \in\{64,11,7,28\}$;
8. Show that if f is a polynomial of degree k, then for $n>k$,

$$
f\left[x_{0}, \ldots, x_{n}\right]=0 .
$$

9. Prove the Leibniz formula

$$
(f g)\left[x_{0}, x_{1}, \ldots, x_{n}\right]=\sum_{k=0}^{n} f\left[x_{0}, \ldots, x_{k}\right] g\left[x_{k}, \ldots, x_{n}\right] .
$$

10. Find Hermite's interpolation for the data

$$
p\left(x_{i}\right)=y_{i}, \quad p^{\prime}\left(x_{i}\right)=0 \text { for } i=0,1, \ldots, n .
$$

11. In the derivation of the Lagrange form of Hermite's interpolation, compute $l_{i}^{\prime}(x)$ for $0 \leq i \leq n$.
