MATH3230A - Numerical Analysis
 Exercises on Nonlinear systems of equations

1 Newton's method

1. Perform two Newton iteration for the system

$$
x y^{2}+x^{2} y+x^{4}=3, \quad x^{4} y^{5}-2 x^{5} y-x^{2}=-2
$$

starting with $(1,1)$.
2. Perform two Newton iteration for the system

$$
x y=z^{2}+1, \quad x y z+y^{2}=x^{2}+2, \quad e^{x}+z=e^{y}+3
$$

starting with $(1,1,1)$.

2 Broyden's method

1. Let $A \in \mathbb{R}^{n \times n}$ be an invertible matrix with vectors $u, v \in \mathbb{R}^{n}$. Show that

$$
\frac{\left(\frac{A^{-1} u}{1+v \cdot A^{-1} u}-A^{-1} u\right) \otimes A^{-T} v}{v \cdot A^{-1} u}=\frac{A^{-1}(u \otimes v) A^{-1}}{1+v \cdot A^{-1} u}
$$

where $A^{-T}=\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}$.
2. Given a matrix $C \in \mathbb{R}^{n \times n}$ and vectors $w, z, g \in \mathbb{R}^{n}$, the matrix $D \in \mathbb{R}^{n \times n}$ satisfying $D w=z$ and $D y=C y$ for any $y \cdot g=0$ has the form

$$
D=C-\frac{(z-C w) \otimes g}{g \cdot w} .
$$

Use the above formula, as well as the conditions

$$
A_{k}\left(x_{k}-x_{k-1}\right)=F\left(x_{k}\right)-F\left(x_{k-1}\right), \quad A_{k} y=A_{k-1} y \text { for } y \cdot\left(x_{k}-x_{k-1}\right)=0,
$$

show that

$$
A_{k}=A_{k-1}+\frac{\left(F\left(x_{k}\right)-F\left(x_{k-1}\right)-A_{k-1} d_{k-1}\right) \otimes d_{k-1}}{d_{k-1} \cdot d_{k-1}}, \quad d_{k-1}=x_{k}-x_{k-1} .
$$

Use the above formula to derive an alternative variant of Broyden's method using A_{k} instead of A_{k}^{-1}.
3. Perform two iterations of the good and bad Broyden method to

$$
x y^{2}+x^{2} y+x^{4}=3, \quad x^{4} y^{5}-2 x^{5} y-x^{2}=-2
$$

starting with $\left(x_{0}, y_{0}\right)=(1,1)$ and $A_{0}=D F\left(x_{0}, y_{0}\right)$.

3 Steepest descent

1. Compute the Hessian for the function $g(x)=\frac{1}{2} x^{T} A x-b^{T} x$ where A is a symmetric matrix.
2. Let A be a symmetric matrix with $A x=b$. Let y be any vector. Show that

$$
\frac{1}{2}(x-y)^{T} A(x-y)=\frac{1}{2} b^{T} A^{-1} b+g(y) .
$$

Explain why minimizing $g(y)$ is equivalent to minimizing $\frac{1}{2}(x-y)^{T} A(x-y)$.
3. For x such that $A x=b$, compute the gradient of $g(y)=\frac{1}{2}(x-y)^{T} A(x-y)$.
4. Let A be a positive definite and symmetric matrix. Recall that the steepest descent method for solving $A x=b$ is: Select x_{0}, for $k=0,1,2, \ldots$ do the following:
(i) Compute $d_{k}=b-A x_{k}$ and $\alpha_{k}=\frac{d_{k} \cdot d_{k}}{d_{k} \cdot A d_{k}}$.
(ii) Update $x_{k+1}=x_{k}-\alpha_{k} d_{k}$.

Suppose at some iteration k, the error vector $e_{k}=x_{k}-x^{*}$ is an eigenvector of A, show that
(a) $d_{k}=-\lambda e_{k}$ where λ is the corresponding eigenvalue of e_{k};
(b) $e_{k+1}=0$.

This shows that the subsequent descent step moves directly to the correct solution to $A x=b$.
5. Perform two iterations of the steepest descent method for the system

$$
\left(\begin{array}{ccc}
2 & 0 & -1 \\
-2 & -10 & 0 \\
-1 & -1 & 4
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
1 \\
-12 \\
2
\end{array}\right)
$$

with starting vector $(0,0,0)$.
6. Let A be an SPD matrix with eigenvalues

$$
0<\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n} .
$$

Consider the sequence $\left\{x_{k}\right\}$ generated by

$$
x_{k+1}=x_{k}-\alpha\left(b-A x_{k}\right),
$$

where x^{*} is the solution to $A x=b$. Show that
(i) $x_{k+1}-x^{*}=(I-\alpha A)\left(x_{k}-x^{*}\right)$;
(ii) The eigenvalues of the matrix $I-\alpha A$ are $\left\{1-\alpha \lambda_{i}\right\}_{i=1}^{n}$;
(iii) The sequence $\left\{x_{k}\right\}$ converges to x^{*} if $\alpha<\frac{2}{\lambda_{n}}$.

