MATH3230A - Numerical Analysis
 Exercises on Linear systems of algebraic equations

1 Vector and matrix norms

1. Show that $\|x\|_{\infty} \leq\|x\|_{2} \leq\|x\|_{1}$ for all $x \in \mathbb{R}^{n}$.
2. Show that $\|x\|_{1} \leq n\|x\|_{\infty}$ and $\|x\|_{2} \leq \sqrt{n}\|x\|_{\infty}$ for all $x \in \mathbb{R}$.
3. Consider for matrix $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$,

$$
\|A\|=\sum_{i=1}^{n} \sum_{j=1}^{n}\left|a_{i j}\right| .
$$

Is this a matrix norm?
4. Suppose for a matrix $A \in \mathbb{R}^{n \times n},\|A\|<1$. Show that there cannot exist $x \in \mathbb{R}^{n}$ with $\|x\|=1$ such that $(I-A) x=0$. Deduce that $(I-A)$ is invertible.
5. Compute

$$
(I-A) \sum_{i=0}^{m} A^{i}
$$

and show that if $\|A\|<1$ then $\left\|A^{m+1}\right\| \leq\|A\|^{m+1} \rightarrow 0$. Deduce that $(I-A)^{-1}=$ $\sum_{i=1}^{\infty} A^{i}$.
6. Show that if A is invertible, then for any B it holds that

$$
\frac{\|I-A B\|}{\|A\|} \leq\left\|B-A^{-1}\right\| .
$$

2 Condition number

1. For two invertible matrices A and B, show that

$$
\kappa(A B) \leq \kappa(A) \kappa(B)
$$

2. Compute the condition number of the following matrices using $\|\cdot\|_{1}$ and $\|\cdot\|_{\infty}$ norms:

$$
\text { (i) }\left(\begin{array}{cc}
a+1 & a \\
a & a-1
\end{array}\right), \quad(i i)\left(\begin{array}{cc}
0 & 1 \\
-2 & 0
\end{array}\right), \quad \text { (iii) }\left(\begin{array}{cc}
4 & -3 \\
-1 & 0
\end{array}\right)
$$

3. Show that the condition number $\kappa(A)$ can also be expressed as

$$
\kappa(A)=\sup _{\|x\|=\|y\|} \frac{\|A x\|}{\|A y\|} .
$$

4. Show that the condition number satisfies the property

$$
\kappa(\lambda A)=\kappa(A) \text { for all } \lambda \neq 0 .
$$

3 Cholesky and LU factorizations

1. Factorize the following matrices

$$
\left(\begin{array}{cccc}
4 & -1 & 0 & 0 \\
-1 & 4 & -1 & 0 \\
0 & -1 & 4 & -1 \\
0 & 0 & -1 & 4
\end{array}\right), \quad\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 5 \\
0 & 4 & 5 & 6 \\
0 & 0 & 6 & 7
\end{array}\right)
$$

2. For the SPD matrix

$$
\left(\begin{array}{ccc}
2 & 6 & -4 \\
6 & 17 & -17 \\
-4 & -17 & -20
\end{array}\right),
$$

determine directly the LDU factorization from its Cholesky factorization..
3. Suppose a SPD matrix A has a Cholesky factorization $A=U^{T} U$. What can be said about its determinant?
4. If A is positive definite, does it follows that A^{-1} is also positive definite?
5. Define a P-matrix to be one where $a_{i j}=0$ if $j \leq n-i$ and a Q-matrix to be a P-matrix in which $a_{i, n-i+1}=1$ for $i=1,2, \ldots n$. Find a PQ factorization of the matrix

$$
A=\left(\begin{array}{cc}
3 & 15 \\
-1 & -1
\end{array}\right)
$$

6. Given a LU factorization of the matrix A. Write down an algorithm to solve $A^{T} x=b$.

4 Pivoting

1. Use Gaussian elimination with partial pivoting to find the determinant of the matrix

$$
\left(\begin{array}{cccc}
0 & -1 & 0 & 1 \\
0 & 1 & 0 & 1 \\
1 & 1 & 2 & 0 \\
2 & 0 & 1 & 0
\end{array}\right)
$$

2. Let P be a permutation matrix, i.e., it is obtained by swapping certain rows of the identity matrix $I \in \mathbb{R}^{n \times n}$. Show that if L is a unit lower triangular matrix, then $P L P^{-1}$ is also unit lower triangular.
3. Find a permutation matrix P, unit lower triangular matrix L, upper triangular matrix U so that $P A=L U$ for the following matrix

$$
A=\left(\begin{array}{cccc}
-1 & 6 & 0 & -8 \\
1 & 0 & -6 & 1 \\
0 & 1 & -1 & -1 \\
2 & 0 & -4 & 4
\end{array}\right)
$$

4. Use Gaussian elimination with pivoting to obtain the factorization $P A=L D U$ for the matrix

$$
A=\left(\begin{array}{ccc}
3 & 2 & -1 \\
6 & 6 & 2 \\
-1 & 1 & 3
\end{array}\right)
$$

5. A matrix $A \in \mathbb{R}^{n \times n}$ is column-wise diagonally dominant if

$$
\left|a_{j j}\right|>\sum_{1 \leq i \leq n, i \neq j}\left|a_{i j}\right| \text { for all } 1 \leq j \leq n .
$$

Let $A^{(1)}$ denote the matrix obtained from A after applying one round of Gaussian elimination with entries $a_{i j}^{(1)}=a_{i j}-\frac{a_{1 j}}{a_{11}} a_{i 1}$ and $a_{i 1}^{(1)}=0$ for $2 \leq i \leq n$. Show the following assertions to establish that $A^{(1)}$ is also column-wise diagonally dominant, i.e.,

$$
\left|a_{j j}^{(1)}\right|>\sum_{i \geq 2, i \neq j}\left|a_{i j}^{(1)}\right| \text { for } 2 \leq j \leq n .
$$

(i) $\sum_{i \geq 2, i \neq j}\left|a_{i j}^{(1)}\right| \leq \sum_{i \geq 2, i \neq j}\left|a_{i j}\right|+\frac{\left|a_{1 j}\right|}{\left|a_{11}\right|} \sum_{i \geq 2, i \neq j}\left|a_{i 1}\right|$;
(ii) $\sum_{i \geq 2, i \neq j}^{n}\left|a_{i j}\right| \leq\left|a_{j j}\right|-\left|a_{1 j}\right|$;
(iii) $\sum_{i \geq 2, i \neq j}^{n}\left|a_{i 1}\right| \leq\left|a_{11}\right|-\left|a_{j 1}\right|$;
(iv) $\left|a_{j j}\right|-\frac{\left|a_{1 j}\right|}{\left|a_{11}\right|}\left|a_{j 1}\right| \leq\left|a_{j j}^{(1)}\right|$.

Is partial pivoting needed for matrices that are column-wise diagonally dominant?

5 Non-square linear systems

1. The equation of a straight line is given by $y=m x+c$. Find the closest line to the points $(0,6),(1,0)$ and $(2,0)$ by defining a suitable overdetermined system. [Here closest means the 2-norm of the error is minimized]
2. Find a parabola given by $y=a+b x+c x^{2}$ that comes closest to the values $y=$ $(0,0,1,0,0)$ at points $x=(-2,-1,0,1,2)$ by defining a suitable overdetermined system.
3. Compute the point (x, y, x) that lies on the intersection of two planes

$$
x+y+x=1, \quad-x-y+x=0
$$

that is closest to the origin by defining a suitable underdetermined system.
4. Show that the following systems has infinitely many solutions:

$$
\begin{aligned}
x_{1}-2 x_{2}+4 x_{3} & =2, \\
2 x_{1}+x_{2}-2 x_{3} & =-1, \\
3 x_{1}-x_{2}+2 x_{3} & =1, \\
2 x_{1}+6 x_{2}-12 x_{3} & =-6 .
\end{aligned}
$$

Then, compute the solution with the smallest 2-norm.

