
MATH3230A - Numerical Analysis
Exercises on Floating point arithmetic

1 Rounding errors

1. Determine the absolute and relative errors when approximating p by p∗ where

• p = 3, p∗ = 3.1;

• p = 0.00003, p∗ = 0.000031;

• p = 30000, p∗ = 31000;

2. Perform rounding on the following binary numbers and compute the relative
error:

• (1.001101)2 to 3 digits after the binary point;

• (1.0001110101)2 to 2 digits after the binary point;

• (0.110110)2 to 4 digits after the binary point.

3. Show that the relative errors for rounding and chopping a binary number x to
n digits are

x̂ − x

x
≤

⎧⎪⎪
⎨
⎪⎪⎩

2−n rounding,

2−(n+1) chopping.

2 Machine precision

1. For a floating-point format with 9 bits, given 1 bit is reserved for the sign of
the binary number, how many bits should be assigned to the mantissa and to
the exponent (unbiased) to create the largest possible binary number. Here
you do not need to reserve for the case where all the entries in the exponents
are 1 for special values.

2. Consider two formats: (a) 6 bits for the unbiased exponent and 5 bits for the
mantissa, (b) 5 bits for the unbiased exponent and 6 bits for the mantissa.
What are the total number of binary decimals that can be represented in both
formats? Here we say that a number can be represented if it has the following
form

x = (1.f1⋯fk)2 × 2(m1⋯mp)2

where k = 5, p = 6 for (a) and k = 6, p = 5 for (b).

1



3. For a floating-point format with 18 bits, suppose 1 bit is reserved for the sign,
12 bits for the exponent and 5 bits for the mantissa. Excluding the special
cases where all the exponents are zero or are ones, compute the value which
the exponent has to be offset so that there is an equal number of non-negative
(counting 0) and negative exponents.

Also compute the smallest, second smallest, largest finite and second largest
finite normalized number in this format.

3 Loss of significance

1. Suggest ways to avoid loss of significance in the following computations

•
√
x4 + 4 − 2;

• ex − e1;

• logx − 1;

2. Let x and y be positive normalized floating-point binary machine numbers of
the form

x = r × 2n, y = s × 2m for 1 ≤ r, s < 2, and n >m.

Suppose

1 −
y

x
≤ 2−p

show by writing x−y as z×2n for some appropriate z that z < 2−p. This means
that at least p spurious zeros are attached to the right end of the mantissa for
the difference x − y and we can expect that at least p significant binary bits
are lost when computing x − y.

3. Similar setting to the above, but now assume

1 −
y

x
≥ 2−q.

Employing a similar argument, show that at most q significant binary bits are
lost when computing x − y.

4. For the following questions use the results of Q2:

• find a lower bound on the input z if we want to lose at most 3 significant
binary bits in the calculation f(z) =

√
z2 + 1 − 1;

• find a lower bound on the input z if we want to lose at most 2 significant
binary bits in the calculation f(z) = log(z + 1) − log(z);

2



4 Error analysis

1. Let εM denote the machine epsilon for a certain floating-point format. Suppose
for n ∈ N we have values {δi}ni=1 with

∣δi∣ ≤ εM , nεM < 1.

Using induction, show that

Πn
i=1(1 + δi) = 1 + θn where ∣θn∣ ≤

nεM
1 − nεM

.

2. Consider the matrices

A = (
a b
0 c
) , B = (

d e
0 f
)

for machine numbers a, b, c, d, e, f .

• Compute the floating-point representation fl(AB) of the product matrix
AB.

• Express your answer in the form

fl(AB) = (
a bX1

0 cX2
)(
dX3 eX4

0 f
) = (A +EA)(B +EB)

with backward error matrices EA and EB.

• Derive an estimate for the matrix norms of EA and EB in terms of εM .

3. Consider a function operator f ∶ X → Y between two vector spaces X and
Y , and its floating-point algorithm f̃ ∶ X → Y . Let εM denote the machine
epsilon. We say that the algorithm is backward stable if

f̃(x) = f(x̃)

for some x̃ satisfying

∥x̃ − x∥

∥x∥
≤ CεM .

for some constant C. Show that

• the multiplication f̃(x1, x2) = fl(fl(x1)fl(x2)) is backward stable;

• the addition f̃(x1, x2) = fl(fl(x1) + fl(x2)) is backward stable;

• the division f̃(x) = fl(fl(x)/fl(x)) for x ≠ 0 is NOT backward stable;

• the operation f̃(x) = fl(x)+1 for x close to zero is NOT backward stable.

3


	Rounding errors
	Machine precision
	Loss of significance
	Error analysis

