# MATH3230A - Numerical Analysis Exercises on Nonlinear equations in one variable 

## 1 Rate of convergence

For the following sequences compute their limits (if they exist) and state the type of convergence.

1. $x_{k}=1+2^{2-k}$ for $k=0,1,2, \ldots$;
2. $x_{k+1}=2^{-k} x_{k}$ for $k=0,1,2, \ldots$;
3. $x_{k}=k^{-d}$ for fixed $d>0$;
4. $x_{k+1}=10^{-4^{k}}$ for $k=0,1,2, \ldots$
5. $x_{k}=(0.5)^{3^{k}}$ for $k=0,1,2, \ldots$;
6. $x_{k}=k^{1 / k}$ for $k=1,2, \ldots$;
7. $x_{k+1}=\tan ^{-1}\left(x_{k}\right)$;

## 2 Bisection algorithm

1. Apply the Bisection algorithm to find a positive root of

$$
x^{2}-4 x \sin (x)+(2 \sin (x))^{2}=0
$$

Use a calculator to determine the root up to 2 significant decimal points.
2. Let $\left[a_{0}, b_{0}\right.$ ] denote the initial interval, and let $\left[a_{k}, b_{k}\right]$ denote the interval at the $k$ th iteration of the Bisection algorithm. Give an example of a function $f(x)$ such that

$$
a_{0}=a_{1}<a_{2}=a_{3}<a_{4}=a_{5}<a_{6}=\cdots .
$$

3. For $k \in\{2,3,4\}$ consider the function $f_{k}(x)=(x-1)^{k}$. Explain why the Bisection method does not work for the case $k=2$ and $k=4$.
4. For a non-negative differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ with a single minimum at $x^{*}$, i.e., $f\left(x^{*}\right) \leq f(x)$ for all $x \in \mathbb{R}$, what conditions are needed for the function $f$ in order to apply the Bisection algorithm to find the value of $x^{*}$ ?

## 3 Newton's method

1. Compute the first three Newton iterates for the nonlinear problem

$$
f(x)=4 x^{3}-2 x^{2}+3=0
$$

with $x_{0}=-1$.
2. Define $x_{0}=0$ and

$$
x_{k+1}=x_{k}-\frac{\left.\tan \left(x_{k}\right)-1\right)}{\sec ^{2}\left(x_{k}\right)} .
$$

What is the limit of the sequence $\left(x_{k}\right)_{k \in \mathbb{N}}$ and what is the relation to Newton's method?
3. Devise a Newton iteration formula for computing $R^{1 / 5}$ for a given value $R>0$.
4. Explain why Newton's method will not converge for the nonlinear problem $f(x)=x^{2}+1=0$ for any starting value $x_{0} \in \mathbb{R}$.
5. Halley's method for solving $f(x)=0$ uses the formula

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right) f^{\prime}\left(x_{k}\right)}{\left(f^{\prime}\left(x_{k}\right)\right)^{2}-\left(f\left(x_{k}\right) f^{\prime \prime}\left(x_{k}\right)\right) / 2} .
$$

Show that this is Newton's method applied to the function $f(x) / \sqrt{f^{\prime}(x)}$.
6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an increasing convex function with $f\left(x^{*}\right)=0$ for some $x^{*}$. Here convex means that $f^{\prime \prime}(x)>0$ for all $x \in \mathbb{R}$. Show that for any starting point $x_{0} \in \mathbb{R}$ the Newton's method applied to the problem $f(x)=0$ always converge to $x^{*}$ by establishing the following properties

- $e_{k+1}<e_{k}$ for all $k$, where $e_{k}=x_{k}-x^{*}$;
- $e_{k}>0$ for all $k$;
- the sequences $\left(e_{k}\right)_{k \in \mathbb{N}}$ and $\left(x_{k}\right)_{k \in \mathbb{N}}$ converge and identify the equations the limits fulfill.

7. Steffensen's method considers the iteration formula

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{g\left(x_{k}\right)}, \quad g(x):=\frac{f(x+f(x))-f(x)}{f(x)} .
$$

Show that this converges quadratically under suitable hypothesis.

## 4 Fixed-point iterative methods

1. What is $x_{2}$ if $x_{0}=1, x_{1}=2, f\left(x_{0}\right)=2$ and $f\left(x_{1}\right)=1.5$ in the application of the Secant method?
2. What is $x_{2}$ if $x_{0}=0, x_{1}=1$ in the application of the Secant method to $f(x)=x^{2}-2$ ?
3. Write out the Secant method applied to the problem $f(x)=e^{x}-\tan (x)=0$.
4. Compute $x_{2}, x_{3}, x_{4}$ for the Secant method applied to $f(x)=x^{3}-\sinh (x)+4 x^{2}+$ $6 x+9$ with $x_{0}=8, x_{1}=7$.
5. For an iterative function of the form $\varphi(x)=x+f(x) g(x)$ with $f\left(x^{*}\right)=0$ and $f^{\prime}\left(x^{*}\right) \neq 0$. Find sufficient conditions for $g$ so that the fixed-point iteration method will converge cubically to $x^{*}$ if if started close to $x^{*}$.
6. Let $I \subset \mathbb{R}$ be an interval. Recall that a mapping $F: I \rightarrow \mathbb{R}$ is contractive if there is a constant $\lambda \in(0,1)$ such that

$$
|F(x)-F(y)| \leq \lambda|x-y|
$$

for all $x, y \in I$. Show that the following functions are contractive, and give an estimate on the value of $\lambda$ :

- $F(x)=x / 2$ for $I=[1,5]$;
- $F(x)=|x|^{3 / 2}$ for $I=[-1 / 3,1 / 3]$;
- $F(x)=\left(1+x^{2}\right)^{-1}$ for any interval $I$;

7. The Contraction Mapping Theorem states that if $F: I \rightarrow I$ is a contractive mapping where $I$ is a closed subset of $\mathbb{R}$, then $F$ has a unique fixed point. Show that (i) the function $F(x)=4 x(1-x)$ maps the interval $I=[0,1]$ to itself, (ii) $F$ is not a contraction. Explain why this does not contradict with the Contraction Mapping Theorem.
8. Let $p$ be a positive number. Define a fixed-point iterative method to compute the value

$$
x=\sqrt{p+\sqrt{p+\sqrt{p+\sqrt{p+\cdots}}}}
$$

9. Express the Steffensen method as a fixed-point iterative method and compute its order of convergence.
