TA's solution to 2060B homework 6

p.215 Q12. (3 marks)

We need to show that $\forall \varepsilon > 0$, there exists a partition P_{ε} on [0, 1] s.t $U(g, P_{\varepsilon}) - L(g, P_{\varepsilon}) < \varepsilon$.

Let $0 < \varepsilon < 4$. Since g is continuous on $[\varepsilon/4, 1]$, we have $g|_{[\varepsilon/4,1]} \in \mathcal{R}[\varepsilon/4, 1]$. Hence, there exists a partition Q_{ε} on $[\varepsilon/4, 1]$ s.t $U(g|_{[\varepsilon/4,1]}, Q_{\varepsilon}) - L(g|_{[\varepsilon/4,1]}, Q_{\varepsilon}) < \varepsilon/2$. Define the partition P_{ε} on [0, 1] by prepending 0 to Q_{ε} , so that

$$U(g, P_{\varepsilon}) = \sup(g\left[0, \frac{\varepsilon}{4}\right]) \cdot \frac{\varepsilon}{4} + U(g|_{[\varepsilon/4, 1]}, Q_{\varepsilon}),$$
$$L(g, P_{\varepsilon}) = \inf(g\left[0, \frac{\varepsilon}{4}\right]) \cdot \frac{\varepsilon}{4} + L(g|_{[\varepsilon/4, 1]}, Q_{\varepsilon}).$$

Noting that $|g| \leq 1$, we have

$$U(g, P_{\varepsilon}) - L(g, P_{\varepsilon}) \leq 2 \cdot \frac{\varepsilon}{4} + U(g|_{[\varepsilon/4, 1]}, Q_{\varepsilon}) - L(g|_{[\varepsilon/4, 1]}, Q_{\varepsilon})$$

$$< 2 \cdot \frac{\varepsilon}{4} + \frac{\varepsilon}{2} = \varepsilon,$$

which was to be demonstrated.

p.215 Q18. (4 marks)

Plainly we have the result if $f \equiv 0$. Else, $\exists x_0 \in [a, b]$ s.t.

$$f(x_0) = \sup(f[a, b]) > 0.$$

Let $0 < \varepsilon < f(x_0)$. By the continuity of $f, \exists \delta > 0$ s.t. $f(x) > f(x_0) - \varepsilon$ $\forall x \in (x_0 - \delta, x_0 + \delta) \cap [a, b] := I$. Note that I is always an interval of positive length, regardless of whether $x_0 \in (a, b)$ or $x_0 \in \{a, b\}$. Denote its length by ℓ_{ε} .*

Consider the step function $g:[a,b] \to \mathbb{R}$ defined by

$$g(x) = \begin{cases} f(x_0) - \varepsilon & \text{if } x \in I \\ 0 & \text{otherwise.} \end{cases}$$

*Note that $\ell_{\varepsilon} < \delta$ if $\delta = 100(b-a)$.

Note that $\forall n \in \mathbb{N}$ we have $g^n \leq f^n$,[†] and that $f^n \leq f(x_0)^n$. Therefore,

$$(f(x_0) - \varepsilon)^n \ell_{\varepsilon} \le \int_a^b f^n \le f(x_0)^n \cdot (b - a),$$

whence

$$(f(x_0) - \varepsilon)\ell_{\varepsilon}^{\frac{1}{n}} \le M_n \le f(x_0) \cdot (b - a)^{\frac{1}{n}}.$$

The proof is then completed by one of the following argument:

(a) We use the tool of $\overline{\lim}$ and $\underline{\lim}$.^{‡§}

Since $\forall n \in \mathbb{N}$ we have

$$(f(x_0) - \varepsilon)\ell_{\varepsilon}^{\frac{1}{n}} \le M_n \le f(x_0) \cdot (b - a)^{\frac{1}{n}},$$

therefore

$$f(x_0) - \varepsilon \leq \underline{\lim} M_n$$
 and $\overline{\lim} M_n \leq f(x_0)$.

By considering $\varepsilon \downarrow 0$, we have $f(x_0) \leq \underline{\lim} M_n$, whence $\underline{\lim} M_n = \overline{\lim} M_n = f(x_0)$, so $\lim M_n$ exists and $\lim M_n = f(x_0)$.

(b) We use $\varepsilon - N$ criterion.[¶]

Since both $\ell_{\varepsilon}^{\frac{1}{n}}$ and $(b-a)^{\frac{1}{n}}$ tend to 1 when $n \to \infty$, so $\exists N$ s.t. $\forall n \ge N$,

$$1 - \varepsilon \le \ell_{\varepsilon}^{\frac{1}{n}}$$
 and $(b - a)^{\frac{1}{n}} \le 1 + \varepsilon$.

It follows that $\forall n \geq N$,

$$f(x_0) - f(x_0)\varepsilon - \varepsilon + \varepsilon^2 = (f(x_0) - \varepsilon)(1 - \varepsilon) \le M_n \le f(x_0)(1 + \varepsilon),$$

whence

$$f(x_0) - (f(x_0) + 1)\varepsilon \le M_n \le f(x_0) + (f(x_0) + 1)\varepsilon.$$

Thus, $\forall n \geq N$ we have $|M_n - f(x_0)| \leq (f(x_0) + 1)\varepsilon$. The result follows.

 $\P A$ student provides this solution.

[†]We need $f \not\equiv 0$ here (consider n = 2 otherwise).

[‡]For their meaning please refer to textbook Section 3.4 or 2050B Hw5.

[§]At this moment we still do not know if $\lim M_n$ exists or not. Therefore, we cannot just let $n \to \infty$ and write $f(x_0) - \varepsilon \leq \lim M_n \leq f(x_0)$. Consider e.g the sequence $\{(-1)^n\}$ and the inequality $-1 \leq (-1)^n \leq 1$. Nevertheless, since $\overline{\lim}$ and $\underline{\lim}$ are defined as the limits of some monotone sequences, so they always exist in $\mathbb{R} \cup \{-\infty, \infty\}$. Their values and difference helps us to study the tail behavior of a sequence.

(c) This is essentially the same approach of using $\overline{\lim}$ and $\underline{\lim}$, but we can assume unfamiliarity with them.

Since (M_n) is a bounded sequence, by Bolzano-Weierstrass Theorem it has a convergent subsequence (M_{n_k}) .

As $\forall n \in \mathbb{N}$ we have

$$(f(x_0) - \varepsilon)\ell_{\varepsilon}^{\frac{1}{n}} \le M_n \le f(x_0) \cdot (b - a)^{\frac{1}{n}}$$

therefore

$$f(x_0) - \varepsilon \le \lim_{k \to \infty} M_{n_k} \le f(x_0).$$

Since $\varepsilon > 0$ is arbitrary, we have $\lim_{k\to\infty} M_{n_k} = f(x_0)$. This shows that every convergent subsequence of (M_n) converges to $f(x_0)$. Therefore it must be that $\lim M_n = f(x_0)$, for otherwise we have the following contradiction:

By the definition of $\lim M_n \neq f(x_0)$, $\exists \varepsilon_0 > 0$ and a subsequence (M_{n_k}) s.t. for all k,

$$|M_{n_k} - f(x_0)| \ge \varepsilon_0.$$

Then applying Bolzano-Weierstrass Theorem to (M_{n_k}) , we have a convergent subsequence of (M_{n_k}) , which is a convergent subsequence of (M_n) but its limit is not $f(x_0)$. This is a contradiction.

p.215 Q19. $(3 \text{ marks})^{\parallel}$

(a) Since $f \in \mathcal{R}[-a, a]$, we have $f|_{[-a,0]} \in \mathcal{R}[-a, 0]$, $f|_{[0,a]} \in \mathcal{R}[0, a]$, and $\int_{-a}^{a} f = \int_{-a}^{0} f + \int_{0}^{a} f$. Therefore it suffices to show $\int_{0}^{a} f = \int_{-a}^{0} f$. We do this by showing that $\forall \varepsilon > 0$,

$$\left|\int_0^a f - \int_{-a}^0 f\right| \le \varepsilon$$

Let $\varepsilon_0 > 0$. By using the tagged partition approach for Riemann integration, $\exists \delta_0 > 0$ s.t. for all tagged partition \dot{P} of [0, a] with

^IA student provides this solution.

 $\left\| \dot{P} \right\| < \delta_0, \text{ and all tagged partition } \dot{Q} \text{ of } [-a, 0] \text{ with } \left\| \dot{Q} \right\| < \delta_0,$ we have $\left\| \begin{array}{cc} & & \\$

$$\left| S(f|_{[0,a]}, \dot{P}) - \int_0^a f \right| \le \frac{\varepsilon_0}{2} \text{ and}$$
$$\left| S(f|_{[-a,0]}, \dot{Q}) - \int_{-a}^0 f \right| \le \frac{\varepsilon_0}{2}.$$

Let $\dot{P}_0 = \{([x_{i-1}, x_i], s_i)\}_{i=1}^n$ be a tagged partition of [0, a] with $\left\|\dot{P}_0\right\| < \delta_0$. Then $\dot{Q}_0 := \{([-x_i, -x_{i-1}], -s_i)\}_{i=n}^1$ is a tagged partition of [-a, 0] with $\left\|\dot{Q}_0\right\| < \delta_0$. Note that $S(f|_{[0,a]}, \dot{P}_0) = S(f|_{[-a,0]}, \dot{Q}_0)$ because f is even. Hence

$$\left| \int_{0}^{a} f - \int_{-a}^{0} f \right| \leq \left| \int_{0}^{a} f - S(f|_{[0,a]}, \dot{P}_{0}) \right| + \left| S(f|_{[-a,0]}, \dot{Q}_{0}) - \int_{-a}^{0} f \right|$$
$$\leq \varepsilon_{0},$$

which was to be shown.

(b) Similar to (a), it suffices to show that $\forall \varepsilon > 0$,

$$\left|\int_0^a f + \int_{-a}^0 f\right| \le \varepsilon.$$

Let $\varepsilon_0 > 0$ and consider the same δ_0 , \dot{P}_0 , \dot{Q}_0 as in (a). Because f is odd, we have

$$S(f|_{[0,a]}, \dot{P}_0) = \sum f(s_i)(x_i - x_{i-1})$$

= $\sum -f(-s_i)(x_i - x_{i-1})$
= $-\sum f(-s_i)(-x_{i-1} - (-x_i))$
= $-S(f|_{[-a,0]}, \dot{Q}_0).$

Hence

$$\begin{aligned} \left| \int_{0}^{a} f + \int_{-a}^{0} f \right| &\leq \left| \int_{0}^{a} f - S(f|_{[0,a]}, \dot{P}_{0}) \right| + \left| -S(f|_{[-a,0]}, \dot{Q}_{0}) + \int_{-a}^{0} f \right| \\ &\leq \varepsilon_{0}. \end{aligned}$$

Done.