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1 Introduction to Complex Analysis

This tutorial is an introduction to complex analysis. The materials below are standard,
and [Ahl79] and [SS03] are good references to elementary complex analysis.

Recall that C = {x + iy : x, y ∈ R}, where i2 = −1. It is natural to identify C with R2

by (x, y) 7→ x+ iy. x and y are called the real and imaginary parts of x+ iy respectively.

Let f : C → C be a function. Denoting the real and imaginary parts of f by u and v
(then f(z) = u(z)+iv(z)) Then f may be identified as a function from R2 to itself defined
by f̃(x, y) = (u(x+ iy), v(x+ iy)).

f : C→ C is said to be complex-differentiable at z0 ∈ C iff

f(z) = f(z0) + f ′(z0)(z − z0) + o(z − z0) (1)

for some complex number f ′(z0), which is called the complex derivative of f at z0.

Recall that the multiplication by a complex number A amounts scaling by the modulus of
A and rotating by the argument of A, and from the real point of view, letting z = x+ iy
and z0 = x0 + iy0, (1) reads

f̃(x, y) = f̃(x0, y0) + r

[
cos θ − sin θ
sin θ cos θ

] [
x− x0

y − y0

]
+ o((x− x0, y − y0)), (2)

which says f̃ is real-differentiable with Jacobian r

[
cos θ − sin θ
sin θ cos θ

]
.

Since the Jacobian is

[
∂xu ∂yu
∂xv ∂yv

]
, if f is complex-differentiable at z0 = x0 + iy0, then the

equations

{
∂xu = r cos θ = ∂yv

∂yu = −r cos θ = −∂xv
(3)

hold. This is known as the Cauchy-Riemann equation.

Example 1. The following functions are complex-differentiable.

1. f(z) = z2 + 1 ((1) may be verified directly with f ′(z0) = 2z0.)

2. g(x+ iy) = ex(cos y + i sin y) ((3) may be verified)

Exercise 2. Show the followings hold.
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1. If f : C → C is complex-differentiable, then the real part u of f is harmonic, i.e.
∆u = 0.

2. If u : R2 → R is harmonic, then there exists a function v : R2 → R such that (3)
holds, and hence there exists a complex-differentiable function whose real part is u.
(Hint: Consider the curl-free vector field (−∂yu, ∂xu).)

Let f : C→ C be a continuous function, and Γ be a C1 curve on C = R2. Let u and v be
the real and imaginary parts of f and x(t) and y(t) be the real and imaginary parts of Γ
One may define the line integral of f on Γ by

ˆ
Γ

f(z)dz =

ˆ
Γ

f(z)z′(t)dt =

ˆ
(u(x(t)) + iv(x(t)))(x′(t) + iy′(t))dt.

Example 3. Let Γ be the positively oriented unit circle. Define f as in Example 1.

1.
´

Γ
f(z)dz = 0

2. 1
2πi

´
Γ
f(z)/zdz = f(0)

The results in the Example above are not coincidental. Indeed, from the observation that

ˆ
Γ

f(z)dz =

ˆ
(u(x(t)) + iv(x(t)))(x′(t) + iy′(t))dt

=

ˆ
Γ

(udx− vdy) + i

ˆ
Γ

(vdx+ udy),

where (u,−v) and (v, u) are curl-free because of Cauchy-Riemann equation, the following
theorems hold.

Theorem 4 (Goursat Theorem (C1 version)). Under the setting presented before complex
line integral is defined, if f is complex-differentiable and f̃ is C1, and Γ is a simple closed
curve, then

´
Γ
f(z)dz = 0.

Theorem 5 (Cauchy Integral Formula (C1 version)). Under the setting presented before
complex line integral is defined, if f is complex-differentiable and f̃ is C1, Γ is a simple
closed curve, and z0 lies in the interior of the domain bounded by Γ, then 1

2πi

´
Γ
f(z)/(z−

z0)dz = f(z0).

Remark. The assumptions of C1 in the theorems above allow proofs by Green’s Theorem.
However, these assumptions are in fact redundant: the theorems still hold if the assump-
tions of C1 is lifted, and f is merely assumed to be complex-differentiable. This more
general theorem will be proven in a standard course on complex analysis.

2 Further Readings

Multivariate integral calculus is basically the capstone of calculus. The completion of this
course is at the same time the completion of the toolbox of calculus, which may be readily
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applied to other areas of mathematics, theoretical and applied alike. Below, extensions to
this course are surveyed for those who are interested in going further than the coursework
materials.

First, it is not exactly true that the calculus toolbox has been completed. As discussed in
the final tutorial, complex analysis exploits the complex structure of the plane for com-
putation. In particular, calculus of residue is an important tool for evaluating improper
integrals. As mentioned in the relevant part of the tutorial note, [Ahl79] and [SS03] are
good references to elementary complex analysis.

The theoretical foundation of integration theory belongs to the realm of mathematical
analysis and real analysis. A Riemann-sum based theoretical foundation of integration
was briefly mentioned in the course, and much of the theory was omitted. Mathematical
analysis makes precise the notions of limit, differentiation, integration and infinite series,
and all the logical gap is filled rigorously. [BS11] and [Spi67] are good introductory books
to singlevariate analysis, while the classical textbook [Rud76] is a deeper, and harder, book
on the subject. I do not know of any introductory textbook on analysis that delineates the
theory of multivariate integration up to Fubini’s theorem, though. ([Rud76]’s exposition
on multivariate analysis is less recommendable than its singlevariate counterpart.) For
most people, the rigorous study of multiple integration takes place in the setting of measure
theory, a branch of real analysis. In measure theory, the whole notion of integration
is redeveloped using Lebesgue sum rather than Riemann sum for better convergence
properties. While Lebesgue integration is more useful than Riemann integration, one still
ought to have mastered Riemann integration before studying Lebesgue integration for the
sake of development of mathematical maturity. [Roy88] is a good introductory book to
measure theory on R, and [Rud86], a sequel to [Rud76] is a good reference for general
measure theory and it includes the proof of an abstract Fubini’s theorem.

Just as the study of equations is a natural extension of that of the four arithmetics,
the study of partial differential equations (PDEs) is a natural extension of the study of
calculus. Partial differential equations relate the changes of a quantity along different
directions, and can be used in disciplines ranging from physics to biology and finance to
model vastly different phenomena. We have had a taste of the theory of partial differential
equations in our study of harmonic functions (solutions to

∑
∂iiu = 0), and the theory

of PDEs is so deep and wide that it is still a field of active research. [Eva10] is a good
reference for the study of PDEs.

Studying geometry by parametrization opens up manifold theory. A manifold, as a gen-
eralization to surfaces, is an object that can be locally parametrized by a domain in Rn.
(“Local” is essential: recall that even the sphere cannot be globally parametrized, for
instance, the parametrization by polar coordinates leaves out the north pole and south
pole.) [Lee13] is a good introductory text to manifold theory. Among other important
results about manifold, generalized Stoke’s Theorem is proven in the book, and more
importantly, the theory of differential form, the language in which Stoke’s Theorem is
written, is explained in detail.

Finally, topological consideration has been lurking in the background of our study of mul-
tivariate calculus. Simple connectedness (not having 1-dimensional holes), a topological
property, is needed for the converses of certain theorems to hold. Topology may be thought
of as qualitative geometry, and it studies properties that are stable against perturbation.
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The numbers of holes is a topological property, for instance, waving a punctured sheet
will not make the hole disappear, and stretching a rubber sheet (before it breaks) will not
make it porous either. In relations to geometry, topology provides the coarsest means to
classify “geometrical” objects, and topological assumptions are often needed in geometri-
cal theorems. Topology is interesting in its own right as well, as qualitative information
is sometimes enough. For instance, existence of solutions is qualitative in nature. Knot
theory furnishes a more picturesque application.

Point-set topology, or general topology, is a dry pre-requisite of topology theory (actually
of manifold theory as well). [Rud76] illustrates basic point-set topological concepts by
discussing metric space topology. [Mun17] is a well-known introductory book on point-set
topology. The theory of “holes”, or more properly, homology and cohomology, belongs
to algebraic topology, for which [Hat01] is a good (and free!) introduction. Cohomology
may be computed by studying differential form. This is known as de Rham cohomology,
which is discussed in [Lee13]. [Ada04] and [Liv93] are good introductory books on knot
theory.

Finally, I wish you all the best in the exam as well as in your pan-mathematical career.
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