Solutions to HW5
$\oint 15.6$
1

$$
\begin{aligned}
m & =\int_{0}^{1} \int_{x}^{2-x^{2}} 3 d y d x \\
& =3 \int_{0}^{1}\left(\left(2-x^{2}\right)-x\right] d x \\
& =3\left(2-\frac{1}{3}-\frac{1}{2}\right) \\
& =\frac{7}{2}
\end{aligned}
$$

$$
\begin{array}{rlrl}
m_{x} & =\int_{0}^{1} \int_{x}^{2-x^{2}} y \cdot 3 \cdot d y d x & m_{y} & =\int_{0}^{1} \int_{x}^{2-x^{2}} x \cdot 3 \cdot d y d x \\
& =\frac{3}{2} \int_{0}^{1}\left[\left(2-x^{2}\right)^{2}-x^{2}\right] d x & & =3 \int_{0}^{1} x\left(2-x^{2}-x\right) d x \\
& =\frac{3}{2} \int_{0}^{1}\left(4-4 x^{2}+x^{4}-x^{2}\right) d x & & =3\left(2 x \frac{1}{2}-\frac{1}{4}-\frac{1}{3}\right) \\
& =\frac{3}{2}\left(4-\frac{5}{3}+\frac{1}{5}\right) & & =\frac{5}{4} \\
& =\frac{38}{10}
\end{array}
$$

$$
\begin{aligned}
\therefore(\bar{x}, \bar{y})=\left(\frac{m_{y}}{m}, \frac{m_{x}}{m}\right) & =\left(\frac{\frac{5}{4}}{\frac{7}{2}}, \frac{\frac{38}{10}}{\frac{7}{2}}\right) \\
& =\left(\frac{5}{14}, \frac{38}{35}\right)
\end{aligned}
$$

$$
\text { I } \begin{aligned}
I_{x} & =\int_{0}^{2 \pi} \int_{0}^{2} y^{2} \cdot 1 \cdot r d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{2} r^{2} \sin ^{2} \theta \cdot r d r d \theta \\
& =\left(\int_{0}^{2 \pi} \sin ^{2} \theta\right)\left(\int_{0}^{2} r^{3} d r\right) \\
& =4 \pi
\end{aligned}
$$

By symmetry, $I_{y}=I_{x}=4 \pi$, and hence $I_{0}=I_{x}+I_{y}=8 \pi$,

$$
(-2,2)
$$

11

$$
\begin{aligned}
I_{x} & =\int_{0}^{2} \int_{-y}^{y-y^{2}} y^{2} \cdot(x+y) d x d y \\
& =\int_{0}^{2}\left[\frac{x^{2} y^{2}}{2}+x y^{3}\right]_{-y}^{y-y^{2}} d y \\
& =\int_{0}^{2}\left[\frac{\left(y-y^{2}\right)^{2}-y^{2}}{2} \times y^{2}+\left(y-y^{2}+y\right) y^{3}\right] d y \\
& =\int_{0}^{2}\left(-y^{5}+\frac{y^{6}}{2}+2 y^{4}-y^{5}\right) d y \\
& =32\left(-\frac{2}{6}+\frac{1}{2 \times 7} \times 2^{2}+\frac{2}{5}-\frac{2}{6}\right) \\
& =\frac{64}{105}
\end{aligned}
$$

$$
\xrightarrow[(0,0)]{x+y=0 .}
$$

13

$$
\begin{aligned}
m_{x} & =\int_{0}^{1} \int_{x}^{2-x} y(6 x+3 y+3) d y d x \\
& =\int_{0}^{1}\left[3 x y^{2}+y^{3}+\frac{3 y^{2}}{2}\right]_{x}^{2-x} d x \\
& =\int_{0}^{1}\left\{\left(3 x+\frac{3}{2}\right)\left[(2-x)^{2}-x^{2}\right]+(2-x)^{3}-x^{3}\right\} d x \\
& =\int_{0}^{1} 3\left(x+\frac{1}{2}\right) \times 4(1-x) d x+\left[-\frac{1}{4}\left(2-x^{4}\right]_{0}^{1}-\frac{1}{4}\right. \\
& =12\left(\frac{1}{2}+\frac{1}{2} \times \frac{1}{2}-\frac{1}{3}\right)-\frac{1}{4}+\frac{16}{4}-\frac{1}{4} \\
& =\frac{17}{2} \\
m_{y} & =\int_{0}^{1} \int_{x}^{2-x} x(6 x+3 y+3) d y d x \\
& =\int_{0}^{1}\left[\left(6 x^{2}+3 x\right) y+\frac{3 x y^{2}}{2}\right]_{x}^{2-x} d x \\
& =\int_{0}^{1}\left[\left(6 x^{2}+3 x\right)(2-2 x)+\frac{3 x}{2}(4-4 x)\right] d x \\
& =6\left(\frac{1}{2}+\frac{1}{3}-2 x \frac{1}{4}\right)+6\left(\frac{1}{2}-\frac{1}{3}\right) \\
& =3
\end{aligned}
$$

13 (cont)

$$
\begin{aligned}
m & =\int_{0}^{1} \int_{x}^{2-x}(6 x+3 y+3) d y d x \\
& =\int_{0}^{1}(6 x+3)(2-2 x)+\frac{3}{2}(4-4 x) d x \\
& =6\left(1+\frac{1}{2}-2 x \frac{1}{3}\right)+6\left(1-\frac{1}{2}\right) \\
& =8
\end{aligned}
$$

$$
\begin{aligned}
\therefore(\bar{x}, \bar{y}) & =\left(\frac{m_{0}}{m_{0}}, \frac{m_{x}}{m}\right) \\
& =\left(\frac{3}{8}, \frac{17}{16}\right)
\end{aligned}
$$

22 The lateral triangle of the solid in the $y z$ plane is given by

$$
\begin{aligned}
J_{x} & \triangleq \int_{-3}^{3} \int_{-2}^{4} \int_{-\frac{4}{3}}^{\frac{4-2 y}{3}} x^{2} d z d y d x \quad\left(\leftarrow \text { This is NOT } I_{x}\right) \\
& =\left[\frac{x^{3}}{3}\right]_{-3}^{3} \times \text { area of triangle } \\
& =18 \times \frac{1}{2} \times 6 \times 4=216
\end{aligned}
$$

22 (cont)

$$
J_{y} \triangleq \int_{-3}^{3} \int_{-2}^{4} \int_{-\frac{4}{3}}^{\frac{4-2 y}{3}} y^{2} d z d y d x
$$

$$
=6 \times \int_{-2}^{4} y^{2}\left(\frac{4-2 y}{3}+\frac{4}{3}\right) d y
$$

$$
=6 \times \frac{1}{3}\left[\frac{8 y^{3}}{3}-\frac{y^{4}}{2}\right]_{-2}^{4}
$$

$$
=2(192-120)
$$

$$
=144
$$

$$
J_{z} \triangleq \int_{-3}^{3} \int_{-2}^{4} \int_{-\frac{4}{3}}^{\frac{4-2 y}{3}} z^{2} d z d y d x
$$

$$
=6 \times \frac{1}{3} \int_{-2}^{4}\left[\left(\frac{4-2 y}{3}\right)^{3}+\left(\frac{4}{3}\right)^{3}\right] d y
$$

$$
=\frac{2}{27}\left[-\frac{(4-2 y)^{4}}{2 \times 4}+4^{3} \cdot y\right]_{-2}^{4}
$$

$$
=64
$$

$$
\text { density } \rightarrow \delta=\frac{\text { mass }}{\text { volume }}=\frac{m}{\frac{1}{2} \times 6 \times 4 \times 6}=\frac{m}{72}
$$

$$
\therefore I_{x}=\frac{m}{72}\left(J_{y}+J_{z}\right) ; I_{y}=\frac{m}{72}\left(J_{x}+J_{z}\right) ; I_{z}=\frac{m}{72}\left(J_{x}+J_{y}\right)
$$

$$
=\frac{26}{9} m
$$

§ 15.8
$9 \quad\left\{\begin{array}{l}x=\frac{u}{v} \\ y=u v\end{array} \Rightarrow\left|\frac{\partial(x, y)}{\partial(u, v)}\right|=\left|\begin{array}{cc}\frac{1}{v} & -\frac{u}{v^{2}} \\ v & u\end{array}\right|=\frac{2 u}{v}\right.$

$$
\begin{aligned}
\therefore \iint_{R}\left(\sqrt{\frac{y}{x}}+\sqrt{x y}\right) d x d y & =\int_{1}^{3} \int_{1}^{2}(v+u)\left(\frac{2 u}{v}\right) d v d u \\
& =2 \int_{1}^{3}\left[u+(\ln 2) u^{2}\right] d u \\
& =8+\frac{52 \ln 2}{3}
\end{aligned}
$$

$12\left\{\begin{array}{l}x=a u \\ y=b v\end{array} \Rightarrow\left|\frac{\partial(x, y)}{\partial(u, v)}\right|=\left|\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right|=a b\right.$
\therefore Area of $\left\{\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \leq 1\right\}=\iint_{\left\{\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \leq 1\right\}} d x d y$

$$
=\iint_{\left\{u^{2}+v^{2} \leqslant 1\right\}} a b d u d v=\pi a b
$$

16

$$
\left\{\begin{array}{l}
x=u^{2}-v^{2} \\
y=2 u v
\end{array} \Rightarrow\left|\frac{\partial(x y)}{\partial(u, v)}\right|=\left|\begin{array}{cc}
2 u & -2 v \\
2 v & 2 u
\end{array}\right|=4\left(u^{2}+v^{2}\right)\right.
$$

Notice that $\quad x \leq 1-\frac{y^{2}}{4} \Leftrightarrow u^{2}-v^{2} \leq 1-u^{2} v^{2} \Leftrightarrow\left(u^{2}-1\right)\left(v^{2}+1\right) \leq 0 \Leftrightarrow|u| \leq 1$

$$
\begin{aligned}
& x \geqslant 0 \quad \Leftrightarrow \quad|u| \geqslant|v| \\
& y \geqslant 0 \quad \Leftrightarrow(u, v \geqslant 0) \text { or }(u, v \leqslant 0)
\end{aligned}
$$

So

Where each of I and II is mapped diffeomorically onto R.

$$
\begin{aligned}
\therefore \int_{0}^{1} \int_{0}^{2 \sqrt{1-x}} \sqrt{x^{2}+y^{2}} d y d x & =\int_{0}^{1} \int_{0}^{u} \sqrt{\left(u^{2}-v^{2}\right)^{2}+(2 u v)^{2}} \cdot 4\left(u^{2}+v^{2}\right) d v d u \\
& =\int_{0}^{1} \int_{0}^{u} 4\left(u^{2}+v^{2}\right)^{2} d v d u \\
& =4 \int_{0}^{1}\left[u^{4}(u)+\frac{2}{3} u^{2}\left(u^{3}\right)+\frac{1}{5} u^{5}\right] d u \\
& =4\left(1+\frac{2}{3}+\frac{1}{5}\right) \times \frac{1}{6} \\
& =\frac{56}{45}
\end{aligned}
$$

23

$$
\left.\begin{array}{rl}
\left\{\begin{array}{l}
x=a u \\
y=b v \\
z=c w
\end{array}\right.
\end{array} \Rightarrow\left|\frac{\partial(x, y, z)}{\partial(a, v, w)}\right|=\left|\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right|=a b c\right\}
$$

24

$$
\left.\begin{array}{rl}
\left\{\begin{array}{l}
u=x \\
v=x y \\
w=3 z
\end{array}\right.
\end{array} \Rightarrow\left|\frac{\partial(x, y, z)}{\partial(u, v, w)}\right|=\left|\frac{\partial(u, v, w)}{\partial(x, y, z)}\right|^{-1}=\left|\begin{array}{ccc}
1 & 0 & 0 \\
y & x & 0 \\
0 & 0 & 3
\end{array}\right|^{-1}=\frac{1}{3 x}=\frac{1}{3 u}\right\}
$$

