Up to this point, the main theme of this book has been the theory and application
of infinite series expansions involving various orthonormal sets of functions. We
now turn to the study of integral transforms, a different but related collection of
techniques for analyzing functions and solving differential equations. We begin
with the Fourier transform, which provides a way of expanding functions on
the whole real line R = (~oo, oo) as (continuous) superpositions of the basic
oscillatory functions e®* (£ € R) in much the same way that Fourier series are
used to expand functions on a finite interval. To provide some motivation, let
us perform a few formal calculations.

Suppose that f is a function on R. For any / > 0 we can expand f on
the interval [/, /] in a Fourier series, and we wish to see what happens to this
expansion as we let / — co. To this end, we write the Fourier expansion as
follows: For x € [-/,1],

1 , ! .
fx) =5 > o™ o= [-1 Sye i gy,
Let AL = n/l and &, = nAE = nn/l; then these formulas become
= iEnx ! —i&yy
F0) = g Do ene® 8 cn= [ f)e dy.

Let us suppose that f(x) vanishes rapidly as x — +oo; then ¢y Will not change
much if we extend the region of integration from [/, /] to (~co, c0):

o0 - f
Cn,l R f fye™ " dy.
This last integral is a function only of &,, which we call f(én), and we now have
1 o= 7z i
fx)m gz 3 fEn)e™ s (x| <),
ade e}
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This looks very much like a Riemann sum. If we now let / — oo, so that A — 0,
the ~ should become = and the sum should turn into an integral, thus:

0= gz [ FOede, where fO) = [ fxjedx (1)

These limiting calculations are utterly nonrigorous as they stand; nonetheless,
the final result is correct under suitable conditions on f, as we shall prove in
due course. The function f is called the Fourier transform of f, and (7.1) is the
Fourier inversion theorem.

Before proceeding, we establish a couple of notational conventions. We
shall be dealing with functions defined on the real line, and most of our integrals
will be definite integrals over the whole line. Accordingly, we shall agree that
an integral sign with no explicit limits means the integral over R (and not an
indefinite integral):

/ Flx)dx = [_ C: F(x)dx.

Moreover, L? will mean L%(R), the space of square-integrable functions on R.
We also introduce the space L' = L!(R) of (absolutely) integrable functions
on R:

L‘:{f:/|f(xj]dx<oo}.

(Here, as with L2, the integral should be understood in the Lebesgue sense, but
this technical point will not be-of any great concern to us.) We remark that L!
is not a subset of L?, nor is L? a subset of L!. The singularities of a function in
L! (that is, places where the values of the function tend to o) can be somewhat
worse than those of a function in L2, since squaring a large number makes it
larger; on the other hand, functions in L? need not decay as rapidly at infinity as
those in L!, since squaring a small number makes it smaller. For example, let

—23 if 0 1
_Jx if0<x<l,
fx) = { 0  otherwise,

—2/3 if 1
) =1 ifx>1,
8(x) {O otherwise.

Then f is in L' but not in L?, whereas g is in L? but not in L!. (The easy
verification is left to the reader.) However, we have the following useful facts:
(i) If f € L! and f is bounded, then f € L?. Indeed,

<M = |fP<Mlf] = / FORdx < M / F(x)] dx < oo

(ii) If f € L? and f vanishes outside a finite interval [, ], then f € L!. This
follows from the Cauchy-Schwarz inequality:

b b 1/2
J1rGdz = [C1-1f1ds < (b—a)l/z( / lf(x)izdx) <o
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7.1 Convolutions

Before studying the Fourier transform, we need to introduce the convolution
product of two functions, a device that will be very useful both as a theoretical
tool and in applications. This idea may seem a bit mysterious to the reader who
has never seen it before; we shall make a few comments on its meaning following
Theorem 7.2, but a fuller appreciation of its significance can best be achieved by
seeing how it arises throughout the course of this chapter.

If f and g are functions on R, their convolution is the function f * g defined
by

fxgx)= / f(x-y)g(y)dy, (1.2)
provided that the integral exists. Various conditions can be imposed on f and g
to ensure that the integral will be absolutely convergent for all x € R, for example:
(i) If f € L' and g is bounded (say |g| < M), then
[ =gy < [ 156 -y = [ 110y < oo
(ii) If f is bounded (say |f| < M) and g € L!, then
/V@—NWWWSMJB@WW<w

(ili) If f and g are both in L2, then by the Cauchy-Schwarz inequality,

[1f-pewlay < \/ e y):?dy\/ [ 1e0)Pay = 1118l < o

(iv) If f is piecewise continuous and g is bounded and vanishes outside a finite
interval [a, b], then fx g(x) exists for all x, since the function y — f (x-y)
is bounded on [a, b] for any x.

(v) It can be shown that if f and g are both in L!, then f % g(x) exists for
“almost every” x, i.e., for all x except for some set having Lebesgue measure
zero; moreover, f * g € L. See Folland [25], §8.1, or Wheeden-Zygmund
[56], §9.1.

This list can be extended. In what follows we assume implicitly that the functions

we mention satisfy appropriate conditions so that all integrals in question are

absolutely convergent. The reader may supply specific hypotheses at will; it would
often be quite tedious to list all possible ones.

We now investigate the basic algebraic and analytic properties of convolu-
tions.

Theorem 7.1. Convolution obeys the same algebraic laws as ordinary multiplica-
tion:
(i) f+(ag+bh)=a(f+g)+b(f «h) for any constants a, b;
(i) fxg=gx [,
(iii) f«(g*xh)=(f*+g)*h.
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Proof- (i) is obvious since integration is a linear operation. For (ii), make
the change of variable z = X — y:

fret)= [ flx-yemdy = [ gt~ dz = g (5).

For (iii), use (ii) and interchange the order of integration:

(Feg)rhx)= [ £ogtx-ph)dy = [[ f2)gts—y = h)dzdy
— [[ 118t - 2= y)hydydz = [ S(@g b =2 dz = S x (g

Theorem 7.2. Suppose that f is differentiable and the convolutions fxgand f'xg
are well-defined. Then f g is differentiable and (f = g) = f' * g. Likewise, if g
is differentiable, then (f * g)' = f g

Proof Just differentiate under the integral sign:

(o)) =2 [ fec-Dgwrdy= [ 1= Dg0)dy = £/ 505)

Since f * g = g * f, the same argument works with f and g interchanged. ]

We emphasize that in Theorem 7.2 one can throw the derivative in (f * g)’
onto either factor. Thus f g is at least as smooth as either f or g, even when
the other factor has no smoothness properties.

Let us pause to make a few remarks that may shed some light on the meaning
of convolutions. In the first place, let us think of the convolution integral as a
limit of Riemann sums,

[ Flx— g dy = 52 Fx =)W )AY;.

The function fj(x) = f(x — ¥;) is the function f translated along the x-axis by
the amount y;, so the sum on the right is a linear combination of translates of
f with coefficients g(y;)Ay;. We can therefore think of f * g as a continuous
superposition of translates of f:and since fxg =g+ f,1it is also a continuous
superposition of translates of g.

Second, convolutions may be interpreted as “moving weighted averages.”
We recall that the average value of a function f on the interval [a, b] is defined
tobe (b—a)~! [ f f(»)dy. More generally, the weighted average of f on [a,b]
with respect to a nonnegative weight function w is

I fOyw)dy.
[Pw(y)dy

Suppose now that g is nonnegative and [ g(y)dy = 1. If we write f * g(x) as
[f)g(x—y)dy, we see that fxg(x) is the weighted average of f (on the whole
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line) with respect to the weight function w(y)=g(x-y). If g(x)=0for|x| >a
then g(x ~y)=0for [x —y|>a,s0 fxg(x)isa weighted average of f on the
interval [x — a, x + a]. In particular, if

_f@a)1 if-a<x<a,
§(x) {O otherwise,

then
1 X+a
Fegt)=g [ sy,
which is the (ordinary) average of f on the interval [x —a, x+a]

- One respect in which convolution does not resemble ordinary multiplication
is that whereas - 1 = f for all f, there is no function g such that fx g = f for
all f. (The Dirac “d-function” does the job, but it is not a genuine function; we
shall discuss it in Chapter 9.) However, we can easily find sequences {gn} such
that f x g, converges to f as n — co. The intuition is provided by the remarks of
the preceding paragraph: If g(x) vanishes (or at least is negligibly small) outside
an interval |x| < a, then f » g(x) will be a weighted average of the values of f
on the interval [x — a, x +a], and if g is very small this should be approximately
f(x).

To be precise, suppose g € L, and for € > 0 let

gex) = 2¢ (%). (X

That is, g is obtained from g by compressing the graph in the x-direction by a
factor of € and simultaneously stretching it in the y direction by a factor of 1/e.
(We are thinking of the case € < 1; if € > 1 the words compressing and stretching
should be interchanged. See Figure 7.1.) As € — O the graph of g becomes a
sharp spike at x = 0, but the area under the graph remains constant:

[e@ax=[¢(X)a(%) = [e0ay.

More generally, the substitution x = €y yields

b b/e
/ge<x>dx= [ swya. (7.4)
a aje

With this in mind, we can state a precise theorem.

Theorem 7.3. Let g be an L' function such that [Z.8)dy =1, and let o =

12 8y)dy and B = [° g(v)dy. (Note that o+ f =1 and that o = § = Lifg
is even.) Suppose that f is piecewise continuous on R, and suppose either that fis
bounded or that g vanishes outside a finite interval so that f * g(x) is well-defined
Jor all x. If ge is defined by (7.3), then

g{%f”‘ ge(x) =af(x+)+ Bf(x-) forall x.
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FIGURE 7.1. A function g(x) (left) and its dilates g,(x) = $g(3x) (middle)
and g;/5(x) = 2g(2x) (right).

In particular, if f is continuous at x, then |
lim f x ge(x) = f (). (7.5)

Moreover, if f is continuous at every point in the bounded interval [a,b], the
convergence in (7.5) is uniform on [a, b}.

Proof: We have
0
£ 8ex) - af(x4) = B10x=) = [ [fCe =)= fl)] &) dy
o0
+ [ [0 =9) - 1G] sy,
so we wish to show that both integrals on the right can be made arbitrarily small
by taking € sufficiently small. The argument is the same for both of them, so we

consider only the second one. Given § > 0, we can choose ¢ > 0 small enough
so that | f(x —y) — f(x-)|] < 6 when 0 < y < ¢, and we break up the integral as

Js+ . By (1.4),

Uoc[f(x-y)—f(x—)}ge(J!)dy’ Sé/(;clge(y)\dy=5f;/€ g\ dy
S5fooo|g(y)ldy,

and we can make this as small as we wish by choosing J suitably. To estimate
the integral from c to oo, we use the assumption that either f is bounded (say
|f| < M) or g vanishes outside a finite interval (say g(x) = 0 for |x| > R). In
the first case, by (7.4),

fcm[f(x -y)- f(x—)]ge()’) dy‘ < ZMjioo |ge(¥)ldy = ZMfc: 1) dy, |
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which tends to zero along with €. In the second case, g¢(x) = 0 for |x| > €R, and
in particular g.(x) =0forx > cife < ¢/R, so the integral from c to co actually
vanishes for ¢ small.

Finally, if f is continuous on [g, b], then f is uniformly continuous there,
so the choice of ¢ in the preceding argument can be made independent of x for
x € [a, b]. It follows easily that the convergence of f x ge(x) to f (x) is uniform
on [a, b]. i

~ There are several variants of Theorem 7.3, which say that f*8g — finsome
sense or other as € — 0 under suitable hypotheses on f and g. We shall content
ourselves with stating a result for norm convergence of L? functions.

Theorem 7.4. Suppose g € L' is bounded and satisfies [ g(y)dy = 1. If f € L?,
then f+g(x) is well-defined for all x, and if ge is defined as in (7.3), f*ge converges
to f in norm as e — 0.

The proof of this result is not really difficult, but it involves some approxi-
mation arguments that are a bit beyond the level of the present discussion. See
Folland [25], Theorem 8.14, or Wheeden-Zygmund [56], Theorem 9.6.

The family {ge} in Theorems 7.3 and 7.4 is called an approximate identity,
since the operation of convolution with ge tends to the identity operator as € — 0.
See Figure 7.2.

D L L T LT I ptyoysgtuvauss RN

FIGURE 7.2. A function f with an infinite singularity and a jump disconti-
nuity (left), '+ Gy,; (middle), and f = Gy 3 (right), where G is the Gaussian
(7.6).
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One of the functions g that is most often used in this context is the Gaussian
Gy) = =27, (7.6)
It satisfies [ G(y)dy = 1 because

o [e2e] o o]
/ eVdy = 2/ eV dy = f e 't7 24t =1(}) = n'/% (7.7)
-0 0 0

G is even, so that when it is used as the g in Theorem 7.3 we have a = f = %
G and its dilated versions G¢ have the property that all their derivatives are
bounded integrable functions. Indeed, it is easily established by induction that
G®(y) = P,(y)e~?" where P, is a polynomial of degree k, and it follows that
IGK)(y)| < Cre~ P!, with similar estimates (involving some powers of €) for
Ge. Hence we can apply Theorems 7.3 and 7.4: If f is (say) bounded and
piecewise continuous, then f x Ge is of class C(®), and it approximates f when
¢ is small. These convolutions may be regarded as “smeared out” or “smoothed
out” versions of f. What we have developed here is a method of approximating
general functions by smooth ones, a useful technical tool in many situations. In
particular, it yields a proof of the following fundamental result.

The Weierstrass Approximation Theorem. If f is a continuous function on [a, b]
(-0 < a < b<oo) then f is the uniform limit of polynomials on [a,b). That is,
for any 6 > 0 there is a polynomial P such that

sup |f(x) - P(x)| <.
a<x<b

ARV VA

au b

FIGURE 7.3. A continuous function f on [a,b] (left) and a continuous ex-
tension of f to R (right).

Proof: Extend f to be a continuous function on the whole real line that
vanishes outside the interval [a — 1, b + 1]; see Figure 7.3. By Theorem 7.3,
f % Ge — f uniformly on [a, b] where G is given by (7.6). Thus, given 6 > 0, if ¢
is sufficiently small we have '

s —(x=y)?/€? J
f(x)*m - e f)dy <7

sup
a<x<b
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As x ranges over [a,b] and y ranges over [a — 1, b + 1], (x - y)/€ ranges over
the bounded set [c,d] where ¢ = (¢ — b — 1)/e and d = (b — a + 1)/e, and the
Taylor series 35 (~1)"£2" /n! for et converges uniformly on this set. It follows
easily that we can replace e~*~7)"/¢" iy the above integral by a suitable Taylor
polynomial without changing the integral by more than %5 . In other words, if N
is sufficiently large,
sup |f(x)~P(x)|<d
as<x<b

where

-1 e2np)

N o obtl [ q\B(y _ \20
P =z [ EEE 2 )0

But P(x) is a polynomial of degree 2N, as one can see by expanding (x —y)2"
by the binomial theorem:

N 2n _1\k—n 1 b+1
Plx) = k. _ _ (=1)F"2n) M-k £ dy. @
(x) Z:%I;)Cknx Ckn = 62”+1n!k!(2n~k)!\,/iz‘/a_,.y f)dy

The Gaussian is not the only commonly used approximate identity. Another

one is given by |

H(y) = m,

which, as we shall see, arises in the solution of the Dirichlet problem for a half-
plane. It shares with G the properties of being even and having derivatives of all
orders that are bounded integrable functions, so it also provides smooth approx-
imations to general bounded functions. Another approximate identity with these
properties, and an extra one that makes it particularly useful in some situations,
is given by

C-le~1/(1=¥") for <1 /1 ~1/(1-y?)
K(y)= ) C= e Ydy. 7.8
2 {0 for |y| > 1, -1 Y (7.8)

K possesses derivatives of all orders, even at y = +1 (because e~/1~7") vanishes
to infinite order as y approaches 1 from the left or —1 from the right), and it
vanishes outside the bounded set |y| < 1. Hence the convolutions [ * K¢ are
well-defined for any piecewise continuous f, bounded or not, and they provide
smooth approximations to all such f. Some other applications of K are given in
Exercises 7 and 8.

EXERCISES
1. Which of the following functions are in L!? in L2?
sinx 3 2—1/2 1 1-cosx
. -—————lem b. (1+x%) c. ] d. —z
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2. Let f(x) = |x|~? where < p < 1. Show that f is in neither L' nor L?, but
that f can be expressed as the sum of an L' function and an L? function.

3. Let f(x)=1if -1 < x <1, f(x) = 0 otherwise.

a. Compute f* fand f* f = f.
b. Let f2(x) = e~ f(e~!x)asin (7.3) and let g(x) = x3~x. Compute fexg
and check directly that fe xg — 2g as€ — 0. (Note that 2 = [ f(x)dx.)

4. Let f(x) = e~*" and g(x) = e~ 2%, Compute f * g. (Hint: Complete the
square in the exponent and use the fact that [ e~Xdx = V)

5. For t > 0, let fi(x) = (4nt)~Y2e=*"/%_ Show that f;  fs = fi4s. (Hint: First
do Exercise 4 as a warmup.)

6. For t > 0, let fi(x) = x'~1/T(¢) for x > 0 and fi(x) = 0 for x < 0. Show
that f; = fs = fi4+s. (Hint: The integral defining f;+s can be reduced to the
integral for the beta function.)

7. Show that for any d > O there is a function ¢ on R with the following
properties: (i) ¢ is of class C(®), (ii) 0 < ¢(x) < 1 for all x, (iii) ¢(x) = 1
when 0 < x < 1, (iv) ¢(x) = 0 when x < —d or x > 1 +d. (Hint: Define
fby f(x)=1if =45 < x <1+ 14, f(x) = 0 otherwise. Show that /' x K
does the job if K is as in (7.8) and € < 34.)

8. Show that for any f € L? and any & > 0, there is a function g such that (i) g
is of class C(*), (ii) g vanishes outside a finite interval, and (iii) || f - g|| < 4.
Proceed by the following steps.

a. Let F(x) = f(x) if |x] < N, F(x) = 0 otherwise. Show that |F — f]| <
18 if N is sufficiently large.

b. Show that g = F « K. does the job if X is as in (7.8) and € is sufficiently
small.

7.2 The Fourier transform

If f is an integrable function on R, its Fourier transform is the function f on R
defined by

7 = / e~ f(x) dx.

We shall sometimes write /"~ instead of f, particularly when the label f is replaced
by a more complicated expression. We shall also occasionally write

Flrx)]=7®

for the Fourier transform of f. (This involves an ungrammatical use of the
symbols x and ¢ but is sometimes the clearest way of expressing things.)

Since ¢~ * has absolute value 1, the integral converges absolutely for all &
and defines a bounded function of &:

fens [irendx (7.9
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Moreover, since [e” ¥ f(x) — e~#* f(x)| < 2|f(x)], the dominated convergence
theorem implies that f(n) — f(£) — 0 when 5 — &, that is, f is continuous.

The following theorem summarizes some of the other basic properties of the
Fourier transform.

Theorem 7.5. Suppose f € L!.
(a) For any a € R,

Flfe-a]=e77@) and Flef(x)] =& -a).
(b) If 6 > 0 and f3(x) = 6L f(x/6) as in (7.3), then
| 18 = f(6¢) and F[f(6x)] = [F1s(2).
(c) If f is continuous and piecewise smooth and fe L, then

[T = iEf(©).
On the other hand, if x f(x) is integrable, then
F |xf ()] = 171 @).
(d) If also g € L', then ~
(f+gy=f38.

Proof: For the first equation of (a), we have
?[f(x ~ a)} = /e"’f"f(x-—a) dx = /e""‘fx"‘f“f(x) dx = e'i“ff(f).

The other equations of (a) and (b) are equally easy to prove; we leave them as
exercises for the reader. As for (c), observe that since /' € L!, the limit

lim f(x) = £(0) + / ” Flx)dx

X400

exists, and since f € L! this limit must be zero. Likewise, limy—,_o f(x) =0.
Hence we can integrate by parts, and the boundary terms vanish:

[T = / e R f(x)dx = - / (—i&)e ™ f(x)dx = iEf(&).
On the other hand, if xf(x) is integrable, since xe™** = i(d/d£)e™" we have

F [xf)] = / e~ % fx) dx = ia% / ™% f(x) dx = i1 (®).
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Finally, for (d),

(Feer@) = [[ e - sk dy dx
= [[e® D fx—ne @ g(y)dxdy
= / / e f(2)e WV g(y)dzdy  (z=X-))
- 72 . ;

Parts (a), (b), and (c) exhibit a remarkable set of correspondences between
functions and their Fourier transforms. In essence: Translating a function cor-
responds to multiplying its Fourier transform by an exponential and vice versa;
dilating a function by the factor § corresponds to dilating its Fourier transform
by the factor 1/J and vice versa; differentiating a function corresponds to mul-
tiplying its Fourier transform by the coordinate variable and vice versa. (Of
course, this formulation is a bit imprecise; there are factors of -1, i, and J to
be sorted out.) This symmetry between f and f extends also to part (d): It will
follow from (d) and the Fourier inversion formula below that

fxg=2n(fgr. (7.10)

Before developing the theory further, let us compute three basic examples
of Fourier transforms. ‘

[ ST

|
Q
<Y SE—

Ficure 7.4. Graph of the function x,.

Example 1. Let ¥, be the function depicted in Figure 7.4:

_J1 ifjx|<a,
Xa(¥) {0 otherwise.

Then

- a . —iaf _ ial :
xa(f)=f__ae 5 g = & _iée =2S"“‘%“‘5. (7.11)

Example 2. Let f(x) = ¢~%"/2 where a > 0. We observe that f satisfies the
differential equation f'(x) + axf(x) = 0. If we apply the Fourier transform to
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this equation, by Theorem 7.5(c) we obtain i 7 (&) + ial[fT (&) =0, or [fT (&) +
a~l¢ f (¢) = 0. This differential equation for f is easily solved:

[f]’(f) é 7 - 62 Trey —&212a
e = logf(§)=->+logC = [f(§)=Ce </2a,

To evaluate the constant C, we set ¢ = 0 and use (7.7):

C:f((}) =/f(x)dx=/e““’f2/2dx= \/g/e—yzdyz /%TE'
Therefore,

F e = ,/?:}e“fz/z". (7.12)

(A neat derivation of this result using contour integrals is sketched in Exer-
cise 1.)

Example 3. Let f(x) = (x? + a*)~! where a > 0. We shall calculate f here by
contour integration; another derivation that uses the Fourier inversion formula
but no complex variable theory is sketched in Exercise 2. If ¢ < 0, =57 is
a bounded analytic function of z in the upper half-plane, so by applying the
residue theorem on the contour in Figure 7.5 and letting N — oo we obtain

R —iEx L—ifz a¢
7 =/ S dx = 2miRes,., G%_&T)’ =mig— =2 (¢<0).

Similarly, if £ > 0 we can mtegrate around the lower half-plane to obtain f (&) =
(n/a)e~%. Of course, for ¢ = 0, f(O) [ f(x)dx = n/a. Conclusion:

?[(xz + az)-‘} = %e'“‘fl. (7.13)

FIGURE 7.5. The contour for Example 3.
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The equation [/'T(¢) = iff(é ) of Theorem 7.5(c) is the analogue of Theorem
2.2 in §2.3 for Fourier series. The moral here, as in the theory of Fourier series,
is that the smoother f is, the faster f decays at infinity, and vice versa. The
examples worked out above illustrate this principle. The function of Example 1
vanishes outside a finite interval but is not continuous; its Fourier transform is
analytic but decays only like 1/& at infinity. The function of Example 3 is smooth
but decays slowly; its Fourier transform decays rapidly but is not differentiable
at ¢ = 0. The function of Example 2 has both smoothness and decay, and is
essentially its own Fourier transform.

One other basic property of Fourier transforms of L functions should be
mentioned here. We observed earlier that if £ € L!, then f is a bounded, con-
tinuous function on R; but something more is true.

The Riemann-Lebesgue Lemma. If f € L!, then f(é) —0as — xo0.

Proof* First suppose that f is a step function, that is, f(x) = 21 cjp;i(x)
where each ¢; is a function that equals 1 on some bounded 1nterval Ix —x;j| < a;
and equals 0 elsewhere. By (7.11) and Theorem 7.5(a), qS (&) = 26~1le=% sing &,
which vanishes at infinity. Hence, so does f

For the general case, if f € L! one can find a sequence {fz} of step func-
tions such that [|fu(x) — f(x)|dx — 0. (When f is Riemann integrable, this
assertion is essentially a restatement of the fact that the integral of f is the limit
of Riemann sums. It is true also for Lebesgue integrable functions, but the proof
naturally requires some results from Lebesgue integration theory. See Folland
[25], Theorems 2.26 and 2.41.) But then by (7.9),

sup Fa® - FOl < / fo(x) = fx)|dx =0 asn— o,

that is, fnf — f uniformly. Since each fn vanishes at infinity, it follows easily
that f does too. ]

The Fourier inversion theorem

We now turn to the Fourier inversion formula, that is, the procedure for recov-
ering f from f. The heuristic arguments in the introduction to this chapter led
us to the formula

Fx) = o / e®* F (&) de. (7.14)

(Note that this is the same as the formula that gives f in terms of f, except for the
plus sign in the exponent and the factor of 2z. This accounts for the symmetry
between f and f in Theorem 7.5.) Our task is to investigate the validity of (7.14).
Like the question of whether the Fourier series of a periodic function f converges
to f, this is not entirely straightforward.
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The first difficulty is that f may not be in L!, as (7.11) shows, and in this
case the integral in (7.14) is not absolutely convergent. Even if it is, one cannot

establish (7.14) simply by substituting in the defining formula for f,
[ F@dz= [[ e sy aya,

and interchanging the order of integration, because the integral [e®*(x—)g¢ ig

divergent. The simplest remedy for both these problems is to multiply f by a
“cutoff function” to make the integrals converge and then to pass to the limit as
the cutoff is removed. vir

One convenient cutoff function is % /2; For any fixed € > 0 it decreases
rapidly as £ — +oo, and to remove it we simply let € — 0. Accordingly, instead
of (7.14), for f € L! we consider

1 e -~ 1 () —
—2——7—!-/€lfx€ Ezfz/zf(f)d§=‘2*5//el€(x Ve 52f2/2f(y)dyd€-

Now the double integral is absolutely convergent and it is permissible to inter-
change the order of integration. The £-integral is evaluated by (7.12):

/ DGy — [ R] (y _ x) = V2R (xmy 26t
€

In other words,
L [ ofx =27y ge 1 ~(x=9)?/26 3. _
3 | T d = = [ e dy = £+ ge(x)

where
1 _-%2 L -x2e?

P(x) = 72——“7;3 , Pe(x) = %qﬁ (%) ==

But this is precisely the situation of Theorem 7.3 and example (7.6) in §7.1 (with
¢ replaced by €v2), and we conclude that if f is piecewise continuous,

lim o [ %e= ) dg = 4 1(x-) + £(x4)]

for all x. We have arrived at our main result.

The Fourier Inversion Theorem. Suppose f is integrable and piecewise continuous
on R, defined at its points of discontinuity so as to satisfy f(x) = : [f (x=)+f (x-%-)]
Jor all x.. Then

fx) = lim —2%- / e e~ 2 f () de,  xeR (7.15)
Moreover, if f € LY, then f is continuous and

flx)= 5= [ F@de,  xer (7.16)
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Proof: The only thing left to prove is the last assertion. But
e kI 7(e)| < | 7o),

so if f e L', we can apply the dominated convergence theorem to evaluate the
limit in (7.15):

2= [T = tim oo [ e LT dE = §[f(e-) + flx4)].

The integral on the left is 1/2x times the Fourier transform of 7 evaluated at —x,
and we have already pointed out that Fourier transforms of integrable functions

are continuous. Hence f is continuous and 1{ fx=)+f (x+)] = f(x). B

The inversion formula (7.16), or its variant (7.15), expresses a general func-
tion f as a continuous superposition of the exponential functions >, In this way
it provides an analogue for nonperiodic functions of the Fourier series expansion
of periodic functions.

Corollary 7.1. If f = B, then f = g.
Proof: Iff-:?, then (f— gy =0, s0 f— g =0 by (7.16). g

If ¢ is the Fourier transform of f € L!, we say that f is the inverse Fourier
transform of ¢ and write f = & ~!¢. The operation F ~! is well-defined by
Corollary 7.1.

Remark. Functions f such that f and f are both in L! exist in great abun-
dance; one needs only a little smoothness of f to ensure the necessary decay of
f at infinity. For example, if f is twice differentiable and f” and f” are also
integrable, then (S = -—ézf(f) is bounded, so | /(&) < C/(1 + &2), whence
f e L. (See also Exercise 7.) Such functions have the property that f and f are
bounded and continuous as well as integrable, and hence f and f are also in L2

A number of variations on the Fourier inversion theorem are possible. For
one thing, a version of (7.15) is true for functions f € L! that are not piecewise
continuous; namely, if f € L!, we have

— i L[ igx —e2E22 7,
£y = lim o= [ e%*e~ €7 ) di
for “almost every” x € R, in the sense of Lebesgue measure. For another, one can
replace the cutoff function e~¢°*/2 in (7.15) by any of a large number of other
functions with similar properties. (See Folland [25], Theorem 8.31; also Exercise
5.) .
On the more naive level, one can ask whether the integral in (7.14) can be
interpreted simply as a (principal value) improper integral, that is, whether
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This amounts to using the cutoff function that equals 1 on [~r, 7] and O elsewhere,
and letting r — oo; it is the obvious analogue of evaluating a Fourier series as
the limit of its symmetric partial sums as we did in §2.2. Just as in that case,
piecewise continuity of f does not suffice, but piecewise smoothness does.

Theorem 7.6. If f is integrable and piecewise smooth on R, then
N T AT
lim o [ T dE = §[f(xm) 4 flx)] (7.17)

Jor every x € R.
Proof: We have

]

fr eif(x"‘y)df _ el'l‘(X'*J’) — g~ ir(x-y) _ 2sin r(x — y)
- l(x h y) X-=Yy

sO
o= | @i = [ [N rp)ayae
1/s1nr(x y)f( Vdy = 1/smryf( —y)dy.

This has the form f * ge(x) where € = 1/r and g(x) = (sinx)/x, just as in
the arguments leading to (7.15). The trouble is that (sinx)/x is not in L!, so
Theorem 7.3 is not applicable. (See Exercise 6.) However, it is well known that

* sinry 0 sinry
d .—./ dy=1,
/o y 7 o ¥ 2

where the integrals are conditionally convergent. (See Boas [8], §9D.) Hence, we
can write

Z‘n e T(E)dE — §[fx-) + f(x4)]

_Lp sy )= sen] dy+ & [T 8B [ ) )] ay,

TJeo Y

and it suffices to show that both integrals on the right tend to zero as r — oo.
Consider the integral over (0,00); the argument for the other one is much
the same. For any K > 0 we can write it as

/OK Si‘;”’ [fGx=y) - fx-)] + /{K SO1Y [ f(x—y) - f(x-)]dy.  (1.18)

If K > 1 we have

B2 - nay| < [T 1oy
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and

*®sinr * sin z
| B2 reydy = sy [~ EE g
K y rk z
These are the tail ends of convergent integrals, so they tend to zero as K — oo,
no matter what r is (as long as, say, » > 1). Hence we can make the integral over

(K, 00) in (7.18) as small as we wish by taking K sufficiently large.
On the other hand, the integral over (0, K) in (7.18) equals

[ 55 sy ay = L[ - 2(-r)]

where

g(y) = Jlx - y)y" f(x-) if0<y <K, g(y) = 0 otherwise.

Since f is piecewise smooth, g is piecewise smooth except perhaps near y = 0,
and g(y) approaches the finite limit f/(x—) as y decreases to 0. Hence g is
bounded on [0, K] and thus is integrable on R. But then g(r) and g(-r) tend to
zero as r — co by the Riemann-Lebesgue lemma, so we are done.

The Fourier transform on L*

We have developed the Fourier transform in the setting of the space L', but
our experience with Fourier series suggests that the space L? should also play
a significant role. This is indeed the case. There is an initial difficulty to be
overcome, in that the integral [e~"* f(x)dx may not converge if f is in L? but
not in L', but there is a way around this problem. The key observation is that the
analogue of Parseval’s formula holds for the Fourier transform. Namely, suppose
that f and g are L' functions such that f and g are in L'. Then f, g, f, and 3
are also in L? (cf. the remark following the Fourier inversion theorem), and by
(7.16) we have

n(f,g) =21 / Fx)glx) dx = / / F(x)eRxZ (@) dé dx

= [[ re T @ dxde = [ foF@ae = (7.2

In other words, the Fourier transform preserves inner products up to a factor of
2n. In particular, taking g = f, we obtain

1712 = 27 £11%,

which is the “Parseval formula” for the Fourier transform.
Now, if f is an arbitrary L? function, we can find a sequence {fy} such that

Jn and f . are in L! and f; — f in the L? norm. (This follows from Theorem
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2.7 of §2.4, which we stated without any proof, but we now have the machinery
to construct such sequences explicitly; see Exercise 8, §7.1.) Then

1Fw = Fl® = 20) fs = ful2~ 0 as m,n — oo,

so { f .} is a Cauchy sequence in L2, Since L? is complete, it has a limit, which
is easily seen to depend on}\y on f and not on the approximating sequence { fu}
We define this limit to be f. In this way, the domain of the Fourier transform
is extended to include all of L?, and a simple limiting argument shows that this
extended Fourier transform still preserves the norm and inner product up to a
factor of 27, and that it still satisfies the properties of Theorem 7.5. In short, we
have the following result.

The Plancherel Theorem. The Fourier transform, defined originally on L' n L?,
extends uniquely to a map from L? to itself that satisfies

(f,8) =2n(f,8) and |[J|*=2x||f|? foral f,g € L2

Moreover, the formulas of Theorem 7.5 still hold for L? functions.

If f isin L? but not in L', the integral [ f(x)e~%* dx defining / may not
converge pointwise, but it may be interpreted by a limiting process like the one
we used in the inversion formula (7.15). That is, if f € L2, as € — 0 the functions
gt defined by

ge(é) - /e—-icfxe—ezxZ/Zf(x) dx

converge in the L2 norm, and pointwise almost everywhere, to f . Likewise, the
functions f© defined by

F(x) = 5z [ e CRTE) ag

converge in the L? norm, and pointwise almost everywhere, to f.
The Fourier inversion theorem is also a useful device for computing Fourier
transforms. Indeed, upon setting ¢ = f the inversion formula (7.16) can be

restated as R R
b=f = [flx)=0n)""¢(-x).

(The original formula (7.16) is valid when ¢ and ?43 are in L!, but in the present
form it continues to hold for any ¢ € L2.) But this means that if ¢ is the Fourier
transform of a known function f, we can immediately write down the Fourier
transform of ¢ by setting & = —x:

o=F = 9@ =22f(-2)
For example, from formula (7.11) we have

F [sinax} _ {n if |¢| < a,
X 0 otherwise.
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TABLE 2. SOME BASIC FOURIER TRANSFORMS

Functions are listed on the left, their Fourier transforms on the right. @ and ¢
denote constants with ¢ > 0 and ¢ € R.

L | f(x) £

2.1 flx-¢) e~ F (&)

3. | el f(x) f&-o

4. | f(ax) a~Lf(a&)

5. f/(x) i£f (&)

6. |xflx) i(f) (&)

7. (f* 8)(x) EHGE)

8. | f(x)g(x) (2m)"1(f*2)(©)
9. | g—a¥’/2 ﬁme-—éz/za
10. | (x? + %)~ (n/a)e—

11. | e~ | 2a(&? +a*)~!
12. Xa(-x)={(1) %m;g% 26~ sina

13. | x"lsinax uxq(é)z{g 82;2

Here x~! sin ax is a function that is in L? but not in L!; the calculation of its
Fourier transform directly from the definition is a somewhat tricky business.

Table 2 contains a brief list of basic Fourier transform formulas that we
have derived in this section. All of them will be used repeatedly in what follows.
Much more extensive tables of Fourier transforms are available — for example,
Erdélyi et al. [22]. (Most of the entries in [22] are in the form of Fourier sine or
cosine transforms; see §7.4, especially the concluding remarks.)

One final remark: The definition of the Fourier transform that we have
adopted here is not universally accepted. Two other frequently used definitions
are

foy = = [ smdx, @)= [ m)dx,

for which the inversion formulas are
_ 1 [ ex7 _ | J2miExy
1) = o= [T OdE 1) = [ r@ e

Some people also omit the minus sign in the exponent in the formulas defining
f, f, and f; it then reappears in the exponent in the inversion formula. f has the
advantage of getting rid of the 27 in the Planchere] theorem, ||/ I2 = ||f]|%, but the
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disadvantage of mtroducmg one in the convolution formula, (f * g)" = v27 /3.
[ obviates the 2’s in both these formulas, || 7 12 = |If1I? and (f = g)" = &, but
introduces them in the formula for derivatives, (f) (&) = 2ni¢f(£). In short,
one can choose to put the 27’s where one finds them least annoying, but one
cannot get rid of them entirely.

EXERCISES

1.

10.

If f(x) = e~ /2 with g > 0, then /(&) = [e~#x=ax’/2gx Derive formula
(7.12) by completing the square in the exponent using Cauchy’s theorem to
shift the path of integration from the real axis (Imx = 0) to the horizontal
line Imx = —¢/a, and finally using (7.7).
Show directly that & [e“a’x ’] = 2a(¢2 +a?)~! and hence derive (7.13) from
the Fourier inversion formula.
Complete the proof of Theorem 7.5(a, b).
Let f be as in Exercise 3, §7.1. Compute f and (f = f)" from the formulas
in that exercise and verify that (f = f)" = (f)2.
Suppose g€ L!, [g(x)dx=1,and g € L.

a. Show that g(d¢) — 1 as 6 — 0 for all € € R.

b. Show that for any continuous f € L!,

hm2 / e g(88)F(&)dE = f(x)

for all x. What if f is only piecewise continuous? (Mimic the argument
leading to (7.15), using the Fourier inversion theorem for g.)
Show that f;° x~!|sinx|dx = co. (Hint: Show that Joeye X~V sin x| dx >
2/n.)
Suppose that f is continuous and piecewise smooth , [ € I? and f' € L2
Show that f € L!. (Hint: First show that f(L+EH)f (é)]zd:f is finite; then
use the Cauchy-Schwarz inequality as in the proof of Theorem 2.3, §2.3.)
Given a > 0, let f(x) = e™*x%"! for x > 0, f(x) = 0 for x < 0. Show that
f(&) =T(a)(1 +i&)~*

Use the residue theorem to show that

F (x41+ 1] e -\%e“m/ﬁ (cos ji +sin \’%)

Let f(x) = (sinhax)/(sinh zx) where 0 < a < 7.
a. Use the residue theorem to show that

fl&) = 21'2(——1)"6“""5' sinh ina.
1

b. Use the fact that 2 sinh ina = e — ¢~ and sum the geometric series

to show that )
sina

coshé +cosa’

f& =




11.

12.

13.

14.

15.
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Given v > —4, let f(x) = (1 - x2?~U2 if |x| < 1, f(x) = 0if |x] > 1.
Show that (&) = 2/ z'/2T'(v + 1)~ J,(&). (Cf. Exercise 14, §5.2.)
For a > 0, let fz(x) = a/ [77:(3«:2 + az)] and gg(x) = (sinax)/nx. Use the
Fourier transform to show that:

a. fax fp = Sarps . &a* &b = Emin(a)-
Use the Plancherel theorem to prove the indicated formulas. In all of them,
a and b denote positive numbers.

a. f Sm(“‘)tfm(bt)dt — nmin(a, 3). (Cf. formula (7.11).)

b i

") (2 +a?) (2 + b?)
c. f(l +it)~%(1 - i)~bdt =
Exercise 8.)

Let /i, be the nth Hermite function as defined in (6.33). Show that Ax({) =
V2 (-i)*hy(€). (Hint: Use induction on n. For A the result is true by
formula (7.12). Assuming the result for Ay, prove it for 4, by applying the
Fourier transform to equation (6.40).) This shows that the Hermite func-
tions are an orthogonal basis of eigenfunctions for the Fourier transform.
Let [n(x) = e~ *2LY(x) for x > 0, ln(x) = 0 for x < 0, where L} denotes
the Laguerre polynomial defined by (6.43), and let ¢4 (&) = (27)~ V21, (£).

a. Show that

T
dt = PV (Cf. formula (7.13).)

22-4=bpT(a+b-1)
I (a)I(D)

. (Here a,b > 1; use

7 @iE-1)
on(C) = 7 QE+ D

- (Hint: Plug the definition of LY into the formula defining T, and inte-
grate by parts n times.)
b. Deduce from part (a) and Theorem 6.15 that {¢,}3° is an orthonormal
basis for the space {f € L? : F~1 f(x) = 0 for x < 0}.

7.3 Some applications

The Fourier transform is a useful tool for analyzing a great variety of problems
in mathematics and the physical sciences. Underlying most of these applications -
is the following fundamental fact.

Suppose L is a linear operator on functions on R that commutes with trans-

lations; that is, if LLf(x)] = g(x) then L[f(x + 5)] = g(x + ) for any s € R.
Then any exponential function e** (a € C) that belongs to the domain of L is an

eigenfunction of L.

The proof of this is very simple: let f(X) = e** and g = L[f]. Then for any

sER,

g(x +8) = L[e®*+)] = L[e%e™] = e® L[e™] = e* g(x).




226 Chapter 7. The Fourier Transform

Setting x = 0, we find that g(s) = g(0)e® for all 5 € R; in other words, g=Cf
where C' = g(0). Thus L[f] = Cf.

Suppose in particular that the domain of L includes all the imaginary expo-
nentials ¢, and let 4(&) be the eigenvalue for e%*; thus L{e®*] = h(£)e®*. If L
satisfies some very mild continuity conditions, one can read off the action of L on
a more or less arbitrary function f from the Fourier inversion formula. Indeed,
that formula expresses f as a continuous superposition of the exponentials e’*

10 = 52 [ F@e= e,

and so

LIfIR) = 7 [ FeLie®1de = 5 [ Femere .

(The continuity conditions on L are used here to justify treating/\the integral as
if it were a finite sum.) Thus, in terms of the Fourier transform f, the action of
L reduces to the simple algebraic operation of multiplication by the function 4,
(LLf1)" = hf, so passage from f to f may simplify the analysis of L immensely.
Alternatively, if / is the Fourier transform of a function H, we can express L as
a convolution: Lf = f« H.

In order for these calculations to work according to the theory we have de-
veloped so far, f and H must be L! or L2 functions. However, as we shall see
in §9.4, it is possible to extend the domain of the Fourier transform to include
much more general sorts of functions, and the present discussion then extends
to the more general situation. In any case, at this point we are only giving an
informal presentation of the ideas rather than precise results.

Perhaps the single most important class of operators L to which this analy-
sis applies is the class of linear differential operators with constant coefficients:
LIf]=YkcifU). Here, of course, we have L[e*] = Yk ¢;(i€)/e®*; hence for
any f, (LLfI¢) = z’g cj(if)ff(f), as we already know from Theorem 7.5(c).
This fact is the basis for the use of the Fourier transform in solving differential
equations, as we shall now demonstrate.

Partial differential equations

In Chapters 2 and 3 we saw how to solve certain boundary value problems for
the heat, wave, and Laplace equations by means of Fourier series. We now use
the Fourier transform to solve analogous problems on unbounded regions. The
crux of the matter is Theorem 7.5(c), which says that the Fourier transform
converts differentiation into a simple algebraic operation. By utilizing this fact
we can reduce partial differential equations to easily solvable ordinary differential
equations. :

To begin with, consider heat flow in an infinitely long rod, given the initial
temperature f(x): ‘

Ur = kuxx (—00 < x < ), u(x,0) = f(x). (7.19)
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There are no boundary conditions for ¢ > 0 because there is no boundary, but we
shall assume (for the time being) that u(x, t) and f(x) vanish sufficiently rapidly -
as x — oo to be integrable over the whole line. Then we can apply the Fourier
transform in x to convert (7.19) into

%g(g, f) = -kEAE 0, BE0) = f(&).

For each fixed &, this is a simple ordinary differential equation in ¢ with an initial
condition; its solution is

(e 1) = FE)e™

It remains to invert the Fourier transform, which can be done in either of
two ways. The first is to apply the Fourier inversion theorem to obtain the Fourier
integral formula for u:

u(x, 1) = o [ Free e ae.

The second is to use Theorem 7.5(d) to obtain a formula for u as a convolution;

this has the advantage of expressing u in terms of f rather than f Namely,

by formula (7.12) with @ = 1/2kt, we see that the inverse Fourier transform of
—k& .

e is

i 2
.Kz(X) = me X /4kt‘

Therefore,
u(e, 1) = f  Ki(x) / Flp)e= = 14k gy (7.20)

Once we have this formula in hand, we can verify directly that it works.
It is a simple exercise (Exercise 1 of §1.1) to check that K;(x) satisfies the heat
equation, from which it follows by differentiating under the integral that u(x, ¢)
does also; and that u(x,?) — f(x) as t — 0 (assuming, say, that f is continuous)
follows from Theorem 7.3. Moreover, the hypothesis that f € L' can be relaxed
considerably. Since K;(x) decays very rapidly as x — oo, the integral in (7.20)
will converge as long as f(x) grows less rapidly at infinity than any function ecx’
(e > 0), and an easy extension of the arguments just sketched shows that u still
satisfies (7.19) in this case.

The physical interpretation of (7.20) is as follows. Imagine that the whole
infinite rod starts out at temperature zero, and at time ¢ = 0 a unit quantity of
heat is injected at the origin. As ¢ increases this heat spreads out along the rod,
producing the temperature distribution K;(x). If, instead, the heat is injected
at the point y, the resulting temperature distribution is K;(x — y). Now, in the
problem (7.19), at time ¢ = 0 there is an amount f(y)dy of heat at the point y,
which spreads out to give K;(x — y)f(y)dy at time ¢ > 0. By the superposition
principle, these temperatures can be added up to form (7.20).
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Is (7.20) the only solution of (7.19)? Alas, the answer is no, for there exist
nonzero solutions v(x, ¢) of the heat equation with v(x, 0) = 0. (The construction
is rather complicated; see John [33] or K&rner [34].) However, such functions
v(x,t) grow very rapidly as x — =oo, so they can be dismissed as physically
unrealistic. What is true is that if the initial temperature f(x) is bounded, then
(7.20) is the only bounded solution of (7.19).

Let us now turn to the Dirichlet problem for a half-plane:

Usx +uyy =0 (x €R, y>0), u(x,0) = f(x). (7.21)
Here again we must impose a boundedness condition to obtain uniqueness, and
the reason is simple: If u(x,y) satisfies (7.21), then so does u(x,y) +y. We
therefore assume that f is bounded and (for the moment) integrable, and we

seek a bounded solution of (7.21). _
As with the heat equation, we begin by taking the Fourier transform in x:

“EUGY) + Ay =0, UE0) = F().
This is an ordinary differential equation in y, and its general solution is
1y =G + G, )+ ) = &)
Because of the boundedness requirement, we must reject the solution el so we

take C) = 0 and C; = f. Hence, by Theorem 7.5(d), u(x,y) = f * P,(x) where
By(&) = ek, 50 by (7.13) (with y in place of a),

B =y
Thus, :
u(x,y) = f+ Py(x) = %%:;%dt. (7.22)

This is the Poisson integral formula for the solution of (7.21), and P(x) is called
the Poisson kernel. Since P, € L!, (7.22) makes sense for any bounded f and
defines a bounded function u:

A<M = W) M [ o ai=m

One can check directly that it satisfies Laplace’s equation; and if f is (say) con-
tinuous, we have u(x,y) — f(x) as y — 0 by Theorem 7.3.

The 1-dimensional wave equation can be solved by the same technique, lead-
ing to the solution found in Exercise 6, §1.1. We leave the details to the reader

(Exercise 3).
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Signal analysis

Let f(¢) represent the amplitude of a signal, perhaps a sound wave or an electro-
magnetic wave, at time ¢. The Fourier representation

fi)= z—%/f(w)eiwt do, flw)= /f(t)e—iwtdz

exhibits f as a continuous superposition of the simple periodic waves e‘?! as w
ranges over all possible frequencies. This representation is absolutely basic in the
analysis of signals in electrical engineering and information theory. Whole books
can be, and have been, written on this subject; here we shall just present a couple
of basic results to give the flavor of the ideas. For more extensive treatments we
refer the reader to Bracewell [11], Dym-McKean [19], Papoulis [42], and Taylor
[51].

In the first place, the power of a signal f(¢) is proportional to the square of the
amplitude, |f()]?, so the total energy of the signal is proportional to [If(O)dt.
Hence, the condition that the total energy be finite is just that f € L.

Second, electrical systems can be mathematically modeled as operators L
that transform an input signal f into an output signal L[ f]. Many (but of course
not all) such systems have a linear response, which means that the operator L is
linear. Also, their action is generally unaffected by the passage of time (a given
input signal produces the same response whether it was fed in yesterday or today),
which means that L commutes with time translations. In this case, the general
principles enunciated at the beginning of this section apply, and we see that L is
described by _

(LIfIr=hf, or L{fl=f*H,

where £ is a certain complex-valued function and H is its inverse Fourier trans-
form. £ is called the system function and H is called the impulse response. (H (1)
1s the output when the input is the Dirac d-function; see Chapter 9.) If we write
h(w) in polar form as A(w) = A(w)e?®), A(w) and 8(w) represent the amplitude
and phase modulation due to the operator L at frequency w.

Physical devices that work in real time must obey the law of causality, which
means that if the input signal f(¢) is zero for ¢ < 1, then the output g(¢) = L[ f](¢)
must also be zero for ¢ < ;. In other words,

Fit)=0fort<ty, —> f*H(t)=/oof(s)H(t—s)ds=Ofort<to.
Iy

The only way this can hold for all inputs f is to have H({ —5) = 0 when ¢ < &,
and s > fg, and for this to be true for all #; we must have H(f —s) = 0 when
t—-s<0,ie., H(t)=0fort <0.

This condition on H places rather severe restrictions on the system function
h, and it often implies that certain desirable characteristics of an electrical system
can be achieved only approximately. For example, one often wishes to filter out
all frequencies outside some finite interval -— say, outside the interval [-Q, Q].
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A device to accomplish this is called a band-pass filter, and the system function
for an ideal band-pass filter would be the function A(w) that equals 1 if |w| <
) and equals 0 otherwise. But by a slight modification of formula (7.11), the
corresponding impulse response H(¢) would be H(z).= (sin Qt)/2nt, which does
not obey the causality principle. It is, of course, the business of engineers to
figure out ways to circumvent such difficulties!

Because of their importance in engineering as well as pure analysis, L? func-
tions whose inverse Fourier transforms vanish on a half-line have been studied
extensively. They are known as Hardy functions, and the space of Hardy func-
tions is denoted by H 2, See Exercise 15 of §7.2 for the construction of a useful
orthonormal basis for H?, and Dym-McKean [19] for the physical interpretation
of this basis and further information on H?2.

Let us now turn to a basic theorem of signal analysis that involves a neat in-
terplay of Fourier transforms and Fourier series. Suppose f represents a physical
signal that we are allowed to investigate by measuring its values at some sequence
of times f; < #; < .... How much information can we gain this way? Of course,
for an arbitrary function f(t), knowing a discrete set of values f(z,), f(t2), ...
tells us essentially nothing about the values of f at other points. However, if
S is known to involve only certain frequencies, we can say quite a bit. To be
precise, the signal f is called band-limited if it involves only frequencies smaller
than some constant €, that is, if f vanishes outside the finite interval [-Q, Q].
In this case, since e’ does not change much on any interval of length At €« w71,
one has the intuitive feeling that f(¢ + Af) cannot differ much from f(¢) when
At <« Q71; hence one should pretty well know f once one knows the values f(¢)
at a sequence {;} of points with #;,; — t; ~ Q1.

This bit of folk wisdom can be made into an elegant and precise theorem
by combining the techniques of Fourier series and Fourier integrals. Namely,
suppose that f € L? and f is band-limited. Then f € L? and f vanishes outside
a finite interval, so f € L!. It follows that the Fourier inversion formula holds
in the form (7.16). With this in mind, we have the following result.

The Sampling Theorem. Suppose f € L* and f(a)) =0 for |w| > Q. Then f is
completely determined by its values at the points tn = nn/Q, n =0,£1,%2,.... In
Jact,

f0=31 () S (7.23

Proof: Let us expand f in a Fourier series on the interval [-Q, Q], writing
—n in place of n for reasons of later convenience:

Fw)=3 cone™™® (0] < Q).

The Fourier coefficients ¢, are given by

R RPN nne/Q g, 1 [C 2 nnw/Q g, _ R (AT
o [ i [ i 55(3).
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Here we have used the fact that f(w) = 0 for @] > Q and the Fourier inversion
formula (7.16). Using these two ingredients again, we obtain

ft) =5 ! f f(w)e’“"da)—zgz/ Zf ””) p—inno/Qiot g,

EOUGE =

'(Qt——nn)w/sz

=30 Zf(m) vyl

(Termwise integration of the sum is permissible because the Fourier series of f
converges in .Lz(—Q, ), and we are essentially taking the inner product of this
series with e'®".) i

There is a dual formulation of this theorem for frequency sampling of time-
limited functions. That is, suppose f(f) vanishes for |¢| > L. Then f is deter-
mined by its values at the points wy = nn/L by the same formula (7.23) (with f
replaced by fl The proof is essentially the same, because of the symmetry be-
tween f and f. The sampling theorem can also be modified to deal with signals
whose Fourier transform vanishes outside an interval [a, b] that is not centered
at 0; see Exercise 7.

It is worth noting that the functions

_ sin(Qt — nn) _
sn(f) = 07 (n=0,%£1,%2,...)

form an orthogonal basis for the space of I2? functions whose Fourier transforms
vanish outside [-£2, ], and that the sampling formula (7.23) is merely the expan-
sion of f with respect to this basis. Indeed, the calculations in the proof of the
sampling theorem show that s, is the inverse Fourier transform of the function

§n(w)={("/ﬂ)e ~imme/Q - if o] < Q,
otherwise.

The assertion therefore follows from the Plancherel theorem and the fact that
the functions e~ ""®/Q constitute an orthogonal basis for L*(-Q, Q). Further
discussion of the expansion (7.23) and related topics can be found in Higgins
[29].

From a practical point of view, the expansion (7.23) has the disadvantage
that it generally does not converge very rapidly, because the function (sin x)/x
decays slowly as x — co. A more rapidly convergent expansion for a function
f can be obtained by oversampling, that is, by replacing the sequence of points
nm/Q at which f is sampled by a more closely spaced sequence nz [AL (A > 1).
If this is done, one can replace (sinx)/x by a function that vanishes like x ~2 as
x — oo. The precise result is worked out in Exercise 8.
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Heisenberg’s inequality

It is impossible for a signal to be both band-limited and time-limited; that is,
it is impossible for f and f both to vanish outside a finite interval unless f is

-~

identically zero. Indeed, if / € L? (say) and f(w) = 0 for |w| > €, the integral
- 1 iwz 7
F(z)-—ﬁ—/e fw)dw

makes sense for any complex number z; moreover, we can differentiate under
the integral to see that F(z) is analytic. Thus, f is the restriction to the real axis
of the entire analytic function F, and in particular, f cannot vanish except at
isolated points unless it vanishes identically. In exactly the same way, if f # 0
vanishes outside a finite interval then f has only isolated zeros. R

These facts are aspects of a general principle that says that f and f cannot
both be highly locali}ed. That is, if f vanishes (or is very small) outside some
small interval, then f has to be quite “spread out,” and vice versa. Another piece
of supporting evidence for this idea is Theorem 7.5(b), which says in essence
that composing f with a compression or expansion corresponds to composing f
with an expansion or compression, respectively. To obtain a precise quantitative
result along these lines, we introduce the notion of the dispersion of f about the
point a,

Aaf=/(X~a)zlf(x)lde/flf(X)lzdxa

Aqf is a measure of how much f fails to be concentrated near a. If f “lives
near g,” that is, if f is very small outside a small neighborhood of a, then the
factor of (x — a)? will make the numerator of A, S small in comparison to the
denominator, whereas if f “lives far away from a,” the same factor will make
the numerator large in comparison to the denominator. The following theorem
therefore says that f and f cannot both be concentrated near single points.

Heisenberg’s Inequality. For any f ¢ L2,

A Bal) > L foralla,acR (7.24)

£

Proof:  For technical convenience we shall assume that S is continuous and
piecewise smooth, and that the functions x f(x) and f'(x) are in L2, (The
smoothness assumption can be removed by an additional limiting argument; see
Dym-McKean [19]. If x f(x) is not in L? then A, f = oo, whereas if f'(x) is not
in L? then Aaf = oo, as the calculations below will show; in either case, ( 7.24) is
trivially true.) Let us first consider the case @ = o = 0. By integration by parts,
we have

— B

B
/ xf(x)f(x)dx = x| f(x)? )

A

[ (S0P + 7 ),
A
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or

B
4

B B
[ 1Pz = -2Re [ XS (x)dx + 51100
4 4 :

B B
= 2Re L g0 (x) dx + 51

-~ Since f, g, and f" are in L2, the limits of the integrals in this equation as 4 — —oco
and B — oo exist. Hence, so do the limits of 4|f(4)}? and B|f(B)|%, and these
limits must be zero. (Otherwise, | f(x)] ~ |x|~'/? for large x, and f would not be
in L2.) We can therefore let 4 — —oco and B — oo to obtain

[170)Pdx = ~2Re [ 3T () dx.

By the Cauchy-Schwarz inequality, then,

(Juwrax) sa([#iseopas) ([1reras). 029

But by the Plancherel theorem, [ | /|2 = (27)~! [|f]? and

[irmpax = [UrTera =5 [eferd.

Hence (7.25) can be rewritten as

(Jireorax) ([i7ora) <a( [ Airemiax) (feFerde),

which is (7.24) with a=a =0.
The general case is easily reduced to- this one by a change of variable.
Namely, given g and e, let

F(x)=e " f(x + a).

It is easily verified that F satisfies the hypotheses of the theorem and that A, f =
AoF and Ao f = AgF. (See Exercise 9.) We can therefore apply the preceding
argument to F to conclude that

FNP

(Aaf)Aaf) = (BoF)(Bof) 2

Quantum mechanics

The Fourier transform is an essential tool for the quantum-mechanical descrip-
tion of nature. It would take us too far afield to explain the physics here; but
for those who have the necessary physical background, we present a brief dis-
cussion of the mathematical formalism. For more details, see Messiah [39] or
Landau-Lifshitz [35].




234 Chapter 7. The Fourier Transform

In quantum mechanics, a particle such as an electron that moves along the
x-axis is described by a “wave function” f(x), which is a complex-valued L2
function such that || f]| = 1. | f(x)|? is interpreted as the probability density that
the particle will be found at position x; that is, f |f(0)>dx is the probabﬂrty
that the particle will be found in the interval [a,b]. (The condition ||f] =
guarantees that the total probability is 1.)

The Fourier transform of the wave function f essentially gives the probability
density for the momentum of the particle. More precisely, we define a modified
Fourier transform f by

o)== (§) = 7o [ fx)e™ ™R ax,

where 7 is Planck’s constant. Then the Plancherel theorem implies that
170t dr =5 [1fe-pPdp =5 [\F@Pde = [IrPax=1

Thus | f (p)]2 can be interpreted as a probability density, and it is the probability
density for momentum.

Similar considerations apply to particles moving in 3-space. One merely has
to use the 3-dimensional version of the Fourier transform; see §7.5.

Heisenberg’s inequality is a precise formulation of the position-momentum
uncertainty principle. The numbers A, f and A, f are measures of how much the
probability distributions |} and |f 12 are spread out away from the points a and

a. (If we take a and a to be the mean values of these distributions, A, f and A, f

are their variances.) A simple change of variable shows that A, f = h? Aup 7, so
Heisenberg’s inequality says that

(Acf)(Aaf) > 2 /4.

The uncertainty principle is often cited as one of the mysteries of quantum
mechanics, but the inverse relationship between the spatial or temporal localiza-
tion of a wave and the localization of its frequency spectrum is a general phe-
nomenon that pertains to waves of any sort. What is strange about the quantum
world is that particles behave in some respects like waves.

Other applications

The Fourier transform is a ubiquitous tool in many fields of science as well as
in pure mathematics. For discussions of some of its other applications we refer
the reader to Bracewell [11], Dym-McKean [19] Koérner [34], Papoulis [42], and
Walker [53], [54].

EXERCISES

1. Use the Fourier transform to find a solution of the ordinary differential
equation u” — u+2g(x) = 0 where g € L!. (The solution obtained this way
is the one that vanishes at co. What is the general solution?)
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. Use the Fourier transform to derive the solution
u(x,t) = f* Ki(x / f G(y,8)Ki—s(x - y)dsdy

of the inhomogeneous heat equation u; = kuxx + G(x,t) with initial con-
dition u(x,0) = f(x), where K is as in (7.20). (Observe that if we set
Ki(x) = 0 and G(x,t) = 0 for ¢t < 0, then the second term of u is the
convolution of G with K in the x and ¢ variables.)
. Consider the wave equation u;; = c’uxx with initial conditions u(x,0) =
J(x) and u,(x,0) = g(x).

a. Assuming that all the Fourier transforms in question exist, show that

U, 1) = f(&) cos et + (&) (c&) ™" sincté.

b. Invert the Fourier transform to obtain d’Alembert’s formula for ¥ (Ex-
ercise 6, §1.1). (Hint: For the first term, write coscté = (&% +e™i°K)
and use Theorem 7.5(a); for the second one, cf. formula (7.11).)

. Solve the Dirichlet problem in an infinite strip: uxx + #yy =0 for x € R and

0<y<b,ulx,0) = f(x), u(x,b) = g(x). (Hint: First do the case f = 0.

The case g = 0 reduces to this one by the substitution y — b — y, and the

general case is obtained by superposition. Exercise 10, §7.2 is useful.)

. Let S be the infinite cylinder of radius a, given in cylindrical coordinates

(r,8, z) by the equation r = a. Find the electrostatic potential u inside S if

the portion of S with |z] </ is held at potential 1 and the rest of S is held

at potential 0. (u is clearly independent of 8, so the problem to be solved is
urr4+r~Yur+uz; = Oinside S, u(a, z) = 1if |z| < [ and u(a, z) = 0 otherwise.

Use the Fourier transform in z, and express the answer as a Fourier integral.)

. Suppose f € L? represents a signal. Show that the best approximation to f in

the L2 norm amon%all signals that are band-limited to the interval [-Q, Q]

is go(t) = (2n)~! [2, f(w)e'® dw. That is, show that gy — fl < llg — fll

for all g such that g(w) 0 for |w| > Q (Use the Plancherel theorem, and

cf. Theorem 3.8 of §3.4.)

. State and prove a version of the sampling theorem for signals whose Fourier

transforms vanish outside an interval [a,b]. (A simple-minded answer to

this problem is the following: If, say, 0 < a < b, then [a,b] C [-b,b], and
one can apply the sampling theorem with £ = b. But this gives a formula
for f in terms of its values at the points nz/b, whereas the optimal theorem
involves the more widely spaced points 2nn/(b — a). Hint: If f vanishes

* outside [a, b], consider g(f) = e~ {(6—a/2 f(1),)

. Suppose f € L2(R), f(w) =0 for |w| > Q, and 4 > 1.

a. As in the proof of the sampling theorem, show that

@) =521 (5g)e ™ for joi<iQ
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b. Let g, be the piecewise linear function sketched below. Show that the
- inverse Fourier transform of g; is

_ cosfd — cos At
& == as

]
¥

-AQ -0 Q A0

¢. Observe that f =3 f . By substituting the expansion in part (a) into
the Fourier inversion formula, show that

FTo ) i
f@) = —2-1-7; /_ " f(@)gi(w)e'™ dw = }% 2 (;’%) 82 (t - % '

This gives a sampling formula for f in which the basic functions g;(¢)
- decay like £~2 at infinity.
9. Suppose that f satisfies the hypotheses of Heisenberg’s inequality, and let
F(x) =e " f(x + a).
a. Show that Agf = AgF. R R
b. Show that F(&) = "¢+ f(£ + o) and thence that A, f = AgF.

10. Show that Heisenberg’s inequality (Ag f)(Ag f) > 1 is an equality if and only
if f' + cf = 0 where c is a real constant, and hence show that the functions
that minimize the uncertainty product (Agf)(Agf) are precisely those of
the form f(x) = Ce=*'2 for some ¢ > O. (Hint: Examine the proof
of Heisenberg’s inequality and recall that the Cauchy-Schwarz inequality
| [ fgl < |Ifllllgll is an equality if and only if f and g are scalar multiples
of one another.) AWhat are the minimizing functions for the uncertainty
product (A f)(Axf) for general a,a? (Cf. Exercise 9.)

7.4 Fourier transforms and Sturm-Liouville problems

In §7.3 we solved some boundary value problems by applying the Fourier trans-
form. The same results could have been obtained from a slightly different point of
view, starting with separation of variables. For example, for functions u(x, ) =
X(x)T(¢) the heat equation u; = kuyx separates into the ordinary differential
equations T’ = —&2kT and X” + £2X = O where &2 is the separation constant.
Solution of these equations leads to the products u(x,?) = e~* ¥¢* and hence
to their continuous superpositions

u(x,t) = f c(&)e~Sktitx g
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If the initial condition is u(x,0) = f(x), one sees from the Fourier inversion

formula that ¢(&) = (27)~! 7(&), which leads to the solution (7.20).
What is at issue here is the singular Sturm-Liouville problem

X'x)+EX(x) =0, ~o0<x<o0.

The general solution of this equation is ¢;e** + c,e™* for & # 0 or ¢; + ¢,x for
¢ = 0. None of these functions is in L2(R) except for the trivial case ¢; = ¢, =
0, so there is no possibility of finding an orthonormal basis of eigenfunctions.
Instead, the expansion of an arbitrary f € L?(R) in terms of these eigenfunctions
is given by the Fourier inversion formula

0= 5z [ 70 e L = [ @+ flepelag (.26

(with the integral suitably interpreted).

The reader may wonder what Justlﬁcauon we have for restricting attention to
real values of £ in this situation. The practical answer is that (7.26) works, so no
nonreal values of ¢ are needed. A rather vague but more satisfying reason, which
applies also to other problems of this sort, is the following. When Im¢ # 0, e
blows up exponentially as x — oo or x — —oo, 50 it fails so miserably to be in L2
that it cannot be of any pertinence to an L? problem. But when ¢ is real, %~ is
close enough to being in L? that it can contribute to an eigenfunction expansmn
by an infinitesimal amount, as in (7.26).

Let us now consider two singular Sturm-Liouville problems pertaining to

- functions on the half-line [0, c0):

X"(x) + E2X (x) 0 (0<x<oo), X'(0)=0; (7.27a)
X'(x)+EX(x)=0 (0<x<o0), X(0)=0. (7.27b)

In (7.27a) the solutions that satisfy the boundary condition are multiples of
cos¢x, whereas in (7.27b) they are multiples of sin&x. Again, none of these
functions are in L2(0, c0), so there is no orthonormal basis of eigenfunctions.
Instead, we can hope to find expansion formulas similar to (7.26), namely,

= [ T a@coséxds,  fx)= / ~ b(¢)sinxde

for f € L?(0,00). In fact, such formulas can easily be derived from the Fourier
transform by the same device by which we obtained Fourier sine and cosine series
on [0, n] from Fourier series on [-7, 7], namely, consideration of the even and
odd extensions of f to R.

Indeed, if f € L!(R) and f is even, then

=/f(x)(cos€x—- isincfx)dx=/f(x)coséxdx =2/000f(x)cos€xdx.
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From this it is clear that f is also even, so the inversion formula (suitably inter-
preted as a limit as in Theorem 7.6) becomes

f(x) = -2—% /f{é)(cosfx-l— isinéx)dé = -}Ej{:o f(é) coséxdé.
In the same way, we see that if f is odd, then so is f , and
J@ =2 [" fx)sinexdx,  fo)=1 | Feysinexae.

These formulas involve only the values of f and f on {0, 00), s0 we can use them
on functions that are initially defined only on [0, cc0). This suggests the following

definitions. ;
Suppose now that f € L1(0, c0). We define the Fourier cosine transform and

Fourier sine transform of f to be the functions F[f] and [ f] on [0, o) defined
by

%[ﬂ(é)zlm'f(x)coséxdx and .%'[ﬂ(f):/(}mf(x)sinfxdx.

Thus, if feven and fo4q are the even and odd extensmns of f to R, #[f] and
| f] are the restrictions to [0, o) of 1 5 f. even a0d 11 7, odd- The inversion formulas
therefore become

fx) = % /0  FLAUE) coséx dE = .72; /0 " FLAIE) sinéx de, (7.28)

giving the desired expansions of f in terms of cosines and sines. Here, of course,
the integrals must be interpreted suitably. For example, if f is piecewise contin-
uous we have

im2 [0 e~ CCILE £1(E) cosEx dE = [f(x )+f(x+)]
e—07 Jg

The Parseval formula for % is obtained as follows:

L wnera=g [* fam@rde =g [7 Fam@Pat
=& [ pmerax =3 [ irtax,

and similarly for %. From this one obtains the analogue of the Plancherel theo-
rem: S and F5 extend to maps from L*(0, o) onto itself that satisfy

LA = IELAN = ZUAP.
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This fact, in conjunction with (7.28), gives the eigenfunction expansions for
L2(0, 00) associated to the Sturm-Liouville problems (7.27). ,

& and & have operational properties similar to the ones for the ordinary
Fourier transform given in Theorem 7.5, but they are not quite as simple. For
example, here is how Z interacts with convolutions. Suppose f and g are (say)
bounded and integrable on [0,00), and let F and G be their even extensions
to R. It is easily verified that F x G is also even, so the convolution formula
(F «GY = FG turns into Z[h] = F[f]- F[g] where 2/ is the restriction of FxG
to [0, 00). (The factor of 2 is there because F[f] is the restriction of %f, rather
than f, to [0,00).) We can evaluate / directly in terms of f and g, as follows:
We have

0 oo
FeG) = [ FOIGEx-ydy+ [~ FOIGE-»)dy

= [*FpGE +dy + [” Fo)60x -y ay
0 0

where we have substituted —y for y in the first integral and used the evenness of
F and G. When x > 0, the arguments y, x +, and |x — y| are all positive, so in
this last expression we can replace F and G by f and g. In short, we have

Fif)-FAgN =Tk, hx) =3 [ S0)[gCe+2)+8(x - pD] dy. (129)

Similar formulas for F[f]- Flgl and Flf]- Flgl exist; see Exercise 2.
Also, see Exercise 3 for the interaction of % and . with derivatives.

Example. Consider heat flow in a semi-infinite rod insulated along its length
and at the end:

u; = kuxx forx,t>0, ux(0,¢) =0, u(x,0) = f(x).

Separation of variables in the differential equation together with the boundary
... . 2

condition #x(0, ) = O leads to the product solutions e kt coséx and hence to

their superpositions

i —&2kt
u(x, ) = f c(E)e= " cosEx dE.
0
Setting ¢ = 0 and applying (7.28), we see that c(§) = (2/m)FLf1(E), or
u(x,t) = ;25 /0 gc'[f](f)e‘fzk‘ coséx dé.
This is the Fourier integral formula for the solution. A formula that gives the
solution directly in terms of f instead of Z[f] may be derived from it as follows.

By a simple modification of (7.12),

~vt _ G g(v) where gi(x) = —ae /!
€ C[gt]( ) gt( ) \/;IE >
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so by (7.29),

1 / * ~(x—y)akt | —(x+y)/4kt
u(x,t) = e~ VY +e VY dy.
(8= 57== | 0] Jav
Of course this is nothing but the solution u(x,?) = F % K;(x) derived in §7.3,
where F is the even extension of f to R. The reader should take a minute or two

to figure out why the latter construction gives the right answer. ‘

We have shown how to derive Fourier cosine and sine transforms from the
ordinary Fourier transform; one can also go the other way. Indeed, any function
f on R is the sum of an even function and an odd function:

S=totfi where fix) = LEESER, fiy o S )
Since the even and odd parts of e~"* are cos¢x and —isin¢x, we then have
@)= [ ftwycosexdn i [ fitx)singrax = 2LRIE) - USLALE.

This observation is helpful for using tables of Fourier transforms such as Erdélyi
et al. [22], where most of the entries are given in terms of cosine and sine trans-
forms.

EXERCISES

1. Compute the following transforms, where k& > 0.

a. Fle ™1 b Fle ] ?E[(I + x)e"x] d. HFH[xe ]
2. Lét f and g be in L'(0, c0). Show that %[ f1F:[g] = F[h] where
k(x) — /oof(y) g(lx "'yD?:‘ g(x+y) dy,
0

and that [ f1%[g] = F[H] where

H(x) = /O“ Fly) B - y)g(lx:-z— W -gx+y) 4,

with sgn(f) = 1if > 0 and sgn(t) = -1 if t < 0.
3. Suppose that f is continuous and piecewise smooth and that f and f’ are
in L'(0, 00). Show that

FL NG =EFAE) - £(0),  FLFNE) = -EZL11E).

4. Solve the heat equation %; = kuxx on the half-line x > 0 with boundary
conditions u#(x,0) = f(x) and u(0,1) = 0. (Exercise 2 is useful.) Then solve
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the inhomogeneous equation #; = kuxx + G(x,t) with the same boundary
conditions. (Cf. Exercise 1, §7.3.)

5. Solve the Dirichlet problem in the first quadrant: uxx +uyy = 0 for x,y > 0,
u(x,0) = f(x), u(0,y) = g(y). (Hint: Consider the special cases f = 0 and
g = 0. Use Exercise 2.)

6. Solve Laplace’s equation #xx + #yy = 0 in the semi-infinite strip x >0, 0 <
y < 1 with boundary conditions ux(0,y) = 0, uy(x,0) = 0, u(x,1) = ™.
Express the answer as a Fourier integral. (Use Exercise 1.)

7. Do Exercise 6 with the first two boundary conditions replaced by u(0,y) = 0
and u(x,0)=0

8. Find the steady-state temperature in a plate occupying the semi-infinite strip
x>0, 0<y<liftheedgesy = 0and x = 0 are insulated, the edge
y = 1 is maintained at temperature 1 for x < ¢ and at temperature zero for
x > ¢, and the faces of the plate lose heat to the surroundings according to
Newton’s law with proportionality constant 4. That is, solve

Uxx + Uyy — hu = O, ux(o,y) = Uy(x, O) = 0,
ulx,)=1lifx<ec, u(x,1)=0ifx>c

Express the answer as a Fourier integral.
9. Consider the singular Sturm-Liouville problem

(rf0)) +a™ ) =0 for0<r<i,  f(1)=0. (%)

a. Show that the substitution r = ¢™*, g(x) = f(e™*) converts (+) into the
problem g” + Ag = 0 for 0 < x < oo, g(0) = 0. Put this together with
the Fourier sine transform to derive the “eigenfunction expansion” of a
function f € Ll .(0, 1) associated to (x).

b. Use the result of (a) to solve Exercise 8b in §4.4:

V2 =0 m{meyO§r§L0§65ﬂ}A
u(r,0)=f(r), u(r,ﬂ)=g(r), u(1,6)=

7.5 Multivariable convolutions and Fourier transforms

In this section we consider functions of n real variables, that is, functions on
the space R" of n-tuples of real numbers. The notation for points in R” will be
x = (%j,...,%n). We denote by x-y and |x| the usual dot product and norm on
R"™:

X y=X1Y1 +X2¥2 + -+ XnYn,

x| = (x- x)12 = (x +- +xn)1/2.




