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Three parts of CS in this lecture

» Theory

» Optimization Algorithms

» Applications: students’ presentations
» CS + Image Science,
» CS + Brain and Neuroscience,

CS + Data Science

CS + PDEs

CS + ..

\{
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of CS

v

Looking for sparse solution x from the measurement
y = Ax.
Ais m x N matrix, called measurement matrix. Usually

m << N.
x is assumed to be sparse, namely

|z||lo :== #{x; #0} = s << N.
(P0) |min ||z]|o subject to Az =y.

v

v

> Issues:
» For what's kind of A can one recover x exactly? Or how
do we design measurement matrix?

» Provide an algorithm to reconstruct the sparse vector x.
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References: books

Theory
» Simon Foucart, Holger Rauhut, A Mathematical
Introduction to Compressive Sensing
Optimation Algorithms
» Boyd and Vandenberghe, Convex Optimization
» Neal Parikh and Stephen Boyd, Proximal Algorithms
Applications
» Vishal M. Patel, Rama Chellappa, Sparse Representations
and Compressive Sensing for Imaging and Vision
» H. Boche, R. Calderbank, G. Kutyniok and J. Vybiral,
Compressive Sensing and Its Applications

» Y. Eldar and G. Kutyniok, Compressive Sensing: Theory
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References: Webpages

» compressive sensing resources
» Tutorial: see Compressive Sensing Resources

» Codes: http://web.stanford.edu/~boyd/papers/
prox_algs.html

» Candes lecture: Stats 330 (CME 362) An Introduction to
Compressed Sensing http://statweb.stanford.edu/
~candes/stats330/index.shtml
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Motivations

An invitation to Compressive Sensing

» Sampling Theory

v

Sparse Approximation

Error Correction

v

v

Statistics and Machine Learning

v

Low-Rank Matrix Recovery and Matrix Completion

v

See more from Compressive Sensing Resources
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Theory: Outline

» Three Algorithms:
» Basis Pursuit
» Matching Pursuit (greedy algorithm)
» Thresholding-based methods
» Conditions on A for possible recovery of sparse vector
» Mutual incoherence
» Restricted isometry property
» What kinds of A for possible recovery of sparse vector

» Subgaussian Random matrices (Gaussian, Bernoulli, ...)
» Random sampling BOS (Fourier, wavelets, etc.)

1Ref: Foucart and Rauhut’s book (2013); Papers of Donoho; Candes, Tao; Cai.
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Three kinds of Algorithms

Problem: Suppose x is a sparse vector and measured through
A by y = Ax. The problem is to recovery x from y and A:

(PO) min||z]|o subject to Az =y.

This is an NP hard problem. It is not practical to solve it
directly.
Instead, three algorithms (polynomial computational
complexity) are proposed:

» Basis Pursuit

» Matching Pursuit (greedy algorithm)

» Thresholding-based methods
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Basis Pursuit

Solve a convex relaxation problem

(P1)  min|z||; subject to Az =y

Question: What kinds of A for possible recovery of sparse

vector via basis pursuit.

9/31



Orthogonal Matching Pursuit

OMP algorithm: 2
> S"H = S"U{jni1}s Jnr = argmax;cgal(ay, (y — Az™))|
> 2"t = argmin_{|(y — A2)|]* [supp (z) C S"*'}
Question: What kinds of A for possible recovery of sparse
vector via Orthogonal Matching Pursuit?

2[N]={1,..,N}, SC[N], § = [N]\ S.
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Thresholding-based methods

Suppose the sparse s is known. Given s and the measured

data y, 3

» S% = L,(A*y)

> o# = argmin_{|ly — Az|| | supp (2) C S#}
Question: What kinds of A for possible recovery of sparse
vector via Thresholding-based method?

3Ls (z) is the index set of x whose absolute values are s-largest.
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Conditions on A for possible recovery sparse vector

» Null space property: necessary & sufficient algebraic
conditions, but difficult to verify

» Mutual Incoherence: simple sufficient condition, but not
sharp

» Restrict Isometry Property (RIP): sharp sufficient
condition, but may be hard to verify.
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Algebraic Conditions on measurement matrix A

» null space property: for exact recovery of sparse vector;

» stable null space property: for stable recovery of

compressible vector;

» robust null space property: for robust recovery (under

small perturbation of measurement).
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Exact recovery

» Null space property: A (m x N matrix) satisfies the
null-space property of order s if for any index set S with
|S| <'s, it satisfies

llus|li < |Jvgll for all v € KerA \ {0}

Theorem
Given m x N matrix A. Every s-sparse vector x can be recover

by (P1) iff A satisfies the null space property of order s.
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Stability

» Compressibility: o4(x), := min,{||z — |, | ||2]jo < s}
» Stable null space property: There exists p < 1 s.t. for any
S with |S| < s,

llus|li < pllvgl|: for all v € KerA\ {0}

Theorem
Let A satisfies the stable null space property. Then the
solution x# of (P1) satisfies

2(1+p)

2% — [l <
I—p

O'S(.fll')l
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Robustness

» A is satisfies robust null space property of order s if there
exist constants 0 < p < 1 and 7 > 0 such that for any

index set S with |S| < s, we have

sl < pllvgll + 7| Av]| for all v € CV

Theorem
Let A satisfies the robust null space property and y = Az + e.
Then the solution x* of (P1) satisfies

2(1+p)a

Ja# — ]|, < 1

4r
() + ell
—p

1
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Condition on A: Mutual Incoherence

» Let A=ay, - ,ay], a; normalized column m-vector. *

» Suppose supp (z) = S. Then
solving Az = Ax can recover = uniquely
S Ag:CP—>Cmis 1-1
& AGAg : C° — C° is invertible,
where AfAgs = ((ai, aj))ijes.

4AS = [aju"' 70’]'5]1 S= {j17~-~7js}
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Measure the coherence

Let A = [ay,...,an]| be an m x N matrix with [|a;[|s = 1 Vj.
Definition

1. Coherence of A is defined to be

w(A) = max [(ai, a;)|-

i#]

2. The /;-coherence function: for 1 < s < N —1

111(5) —maxmax{2| a;,a;)],S C [N],|S| = s,i ¢ S}

1€[N]

Question: How small of  or p1(s) leads to (P1) < (P0)?
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Theorem
We have: for all s-sparse vector x

(1= (s = D) [l2]3 < | Az[l3 < (1 + pu(s = 1)) [|=]f3.
Equivalently, the spectrum
0(AgAs) C[1— (s —1),1+ p(s —1)]

for all S with |S| < s. In particular, A5As is invertible for all
|S| < s if

pi(s—1) < 1.
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Mutual Incoherence = Exact Recovery

Theorem

If ui(s) +pa(s—1) <1 orp<1/(2s— 1), then both basis
pursuit and orthogonal matching pursuit are successful to
recover s-sparse vector.

Theorem
If 2p11(s) + pa(s — 1) <1 oru < 1/(3s — 1), then hard
thresholding pursuit can recover s-sparse vector x after s step.
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Matrices with small coherence

Def. The normalized column vectors (ay,--- ,ay) are

» Equiangular: if there exists a ¢ such that

[{a;,a;)| = c for i # j.

» Tight frame: if there exists a A > 0 s.t.
2)* = )\Zé\;l |(z,a;)|* for all z

Theorem
It holds i > (N 1)

equiangular tight frame.

The equality holds iff (ai,--- ,ay) are
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Small coherence

» (ay,--- ,ay) are equiangular implies N < m?.
» The condition p < 1/(2s — 1) is too restrictive in
applications. Because for the smallest conference,
» for large N, smallest coherence p ~ 1/+/m,
> ﬁ ~ < 1/(25 —1) leads to m > s%;
» The optimal m is m ~ sIn(/N/s) (from RIP). This means
that those which satisfy incoherence condition is very

limited.
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Restricted Isometry Property

» Def. 05(A) is the smallest ¢ such that
(1= 0)ll* < lAz||* < (1 + 9)]|=]*.

for all s-sparse vector .
» A satisfies RIP of order s if d; is small.

» Thms. Basis Pursuit, Orthogonal Matching Pursuit ,
Iterative Hard Pursuit and Hard Threasholding Pursuit

are successful if
BP IHP HTP OMP

Jas < 0.6248 | 035 < 0.5773 | 935 < 0.5773 | 0135 < 0.1666
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What kind of A satisfying RIP

» Given an m x N matrix A with N < m?. §,(A) has

upper and lower estimates

Ves/vm < 6 < es/v/m

There is a sufficient gap between the two bounds.
» In fact, certain random matrices satisfy o, < o with high
probability provided

m > ;s In(eN/s)

» Further, any matrix A with 65 < 0 requires

m > Cssln(eN/s).
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What's kind of matrices satisfying RIP

» Random matrices with
» iid Gaussian entries
» iid Bernoulli entries (+/ — 1)
» iid subgaussian entries
» random Fourier ensemble

» random ensemble in bounded orthogonal systems

» In each case, m = O(sln N), they satisfy RIP with very
high probability (1 — e=“™)..

25/31



RPI for subgaussian matrices

Theorem

Let A be a subgaussian matrix. Then there exists a constant
C such that the RIP constant 0, of the normalized matrix
\/LEA satisfies 9, < § with probability at least

1 — 2exp(—d6*m/(2C)), provided

m > %sln(eN/s).

» A random variable X is called subgaussian if
P(|X| > t) < pe=".
» A random matrix A is called subgaussian if each entry is

iid subgaussian (mean 0. variance 1). 26/31



Random sampling in bounded orthonormal system

» Bounded orthonormal system: {¢; : D +— C} be
orthonormal system in L*(D,v), and ||¢;]lc < K, V j.

» {t;, i =1,...,m} are independent random variables with
range in D.

» A= (¢;(ti))mxn is a random matrix.

Theorem
Let x be s-sparse and A be random sampling from BOS with
constant K. If

m > CK?sIn*(6N/e),

then with probability at least 1 — €, we have exact recovery

from basis pursuit.
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Concentration Lemma

Lemma (Concentration Inequality)

Let A be iid subgaussian m x N matrix. Then for any v € RN
and for any 6 € (0,1),

P ([m= | Azll* — ||z ]]*| = dll=[|*) < 2exp(—ct*m),

where ¢ depends on the subgaussian parameter only.
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Connection to Johnson-Lindenstrauss Lemma

Lemma (Johnson-Lindenstrauss)

Given x1, ...,z € RY arbitrary. Given § > 0. If
m > Cd~2In M, then there exists a linear map A : RY — R™
such that

(1= 8)llz; — aell® < | AG; — 2o)|> < (1 + )y — el

forany 1 < 5,0 < M.
Remarks
» |t means we can project high dimension to low dimension
with A being nearly relative isometry.

» The construction is probabilistic. )
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Optimization Algorithms

Problem to solve (Assume convexity)
» min f(z) subject to y = Ax
Main References:

» Boyd and Vandenberghe, Convex Optimization. This
book can be downloaded. It provides a thorough material
about optimization. Both of them have slides. They can

also be downloaded from websites.
» Neal Parikh and Stephen Boyd, Proximal Algorithms

» Vandenberghe, Convex Optimization (slides)
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Convex Optimization Algorithms

» Basic convex analysis
» Gradient methods and Newton's methods
» Proximal algorithms

» Augmented Lagrange Method (ALM) and Alternative
Direction Method of Multipliers (ADMM)
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