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Three parts of CS in this lecture

I Theory

I Optimization Algorithms

I Applications: students’ presentations

I CS + Image Science,

I CS + Brain and Neuroscience,

I CS + Data Science

I CS + PDEs

I CS + ...
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Issues of CS

I Looking for sparse solution x from the measurement

y = Ax.

I A is m×N matrix, called measurement matrix. Usually

m << N .

I x is assumed to be sparse, namely

‖x‖0 := #{xi 6= 0} = s << N.

(P0) min ‖x‖0 subject to Ax = y.

I Issues:
I For what’s kind of A can one recover x exactly? Or how

do we design measurement matrix?

I Provide an algorithm to reconstruct the sparse vector x.
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References: books

Theory

I Simon Foucart, Holger Rauhut, A Mathematical

Introduction to Compressive Sensing

Optimation Algorithms

I Boyd and Vandenberghe, Convex Optimization

I Neal Parikh and Stephen Boyd, Proximal Algorithms

Applications

I Vishal M. Patel, Rama Chellappa, Sparse Representations

and Compressive Sensing for Imaging and Vision

I H. Boche, R. Calderbank, G. Kutyniok and J. Vybiral,

Compressive Sensing and Its Applications

I Y. Eldar and G. Kutyniok, Compressive Sensing: Theory

and Applications
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References: Webpages

I compressive sensing resources

I Tutorial: see Compressive Sensing Resources

I Codes: http://web.stanford.edu/~boyd/papers/

prox_algs.html

I Candes lecture: Stats 330 (CME 362) An Introduction to

Compressed Sensing http://statweb.stanford.edu/

~candes/stats330/index.shtml
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Motivations

An invitation to Compressive Sensing

I Sampling Theory

I Sparse Approximation

I Error Correction

I Statistics and Machine Learning

I Low-Rank Matrix Recovery and Matrix Completion

I ...

I See more from Compressive Sensing Resources
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Theory: Outline

I Three Algorithms:

I Basis Pursuit

I Matching Pursuit (greedy algorithm)

I Thresholding-based methods

I Conditions on A for possible recovery of sparse vector

I Mutual incoherence

I Restricted isometry property

I What kinds of A for possible recovery of sparse vector

I Subgaussian Random matrices (Gaussian, Bernoulli, ...)

I Random sampling BOS (Fourier, wavelets, etc.)

1
1Ref: Foucart and Rauhut’s book (2013); Papers of Donoho; Candes, Tao; Cai.
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Three kinds of Algorithms

Problem: Suppose x is a sparse vector and measured through

A by y = Ax. The problem is to recovery x from y and A:

(P0) min ‖z‖0 subject to Az = y.

This is an NP hard problem. It is not practical to solve it

directly.

Instead, three algorithms (polynomial computational

complexity) are proposed:

I Basis Pursuit

I Matching Pursuit (greedy algorithm)

I Thresholding-based methods
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Basis Pursuit

Solve a convex relaxation problem

(P1) min ‖z‖1 subject to Az = y

Question: What kinds of A for possible recovery of sparse

vector via basis pursuit.
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Orthogonal Matching Pursuit

OMP algorithm: 2

I Sn+1 = Sn ∪ {jn+1}, jn+1 = argmaxj∈Sn|〈aj, (y −Axn)〉|
I xn+1 = argminz{‖(y − Az)‖2 |supp (z) ⊂ Sn+1}

Question: What kinds of A for possible recovery of sparse

vector via Orthogonal Matching Pursuit?

2[N ] = {1, ..., N}, S ⊂ [N ], S̄ = [N ] \ S.
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Thresholding-based methods

Suppose the sparse s is known. Given s and the measured

data y, 3

I S# := Ls(A
∗y)

I x# = argminz{‖y − Az‖ | supp (z) ⊂ S#}
Question: What kinds of A for possible recovery of sparse

vector via Thresholding-based method?

3Ls(x) is the index set of x whose absolute values are s-largest.
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Conditions on A for possible recovery sparse vector

I Null space property: necessary & sufficient algebraic

conditions, but difficult to verify

I Mutual Incoherence: simple sufficient condition, but not

sharp

I Restrict Isometry Property (RIP): sharp sufficient

condition, but may be hard to verify.
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Algebraic Conditions on measurement matrix A

I null space property: for exact recovery of sparse vector;

I stable null space property: for stable recovery of

compressible vector;

I robust null space property: for robust recovery (under

small perturbation of measurement).
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Exact recovery

I Null space property: A (m×N matrix) satisfies the

null-space property of order s if for any index set S with

|S| ≤ s, it satisfies

‖vS‖1 < ‖vS̄‖1 for all v ∈ KerA \ {0}

Theorem
Given m×N matrix A. Every s-sparse vector x can be recover

by (P1) iff A satisfies the null space property of order s.
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Stability

I Compressibility: σs(x)p := minz{‖z − x‖p | ‖z‖0 ≤ s}
I Stable null space property: There exists ρ < 1 s.t. for any

S with |S| ≤ s,

‖vS‖1 ≤ ρ‖vS̄‖1 for all v ∈ KerA \ {0}

Theorem
Let A satisfies the stable null space property. Then the

solution x# of (P1) satisfies

‖x# − x‖1 ≤
2(1 + ρ)

1− ρ
σs(x)1
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Robustness

I A is satisfies robust null space property of order s if there

exist constants 0 < ρ < 1 and τ > 0 such that for any

index set S with |S| ≤ s, we have

‖vS‖1 ≤ ρ‖vS̄‖1 + τ‖Av‖ for all v ∈ CN

Theorem
Let A satisfies the robust null space property and y = Ax+ e.

Then the solution x# of (P1) satisfies

‖x# − x‖1 ≤
2(1 + ρ)

1− ρ
σs(x)1 +

4τ

1− ρ
‖e‖
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Condition on A: Mutual Incoherence

I Let A = [a1, · · · , aN ], aj normalized column m-vector. 4

I Suppose supp (x) = S. Then

solving Az = Ax can recover x uniquely

⇔ AS : Cs → Cm is 1-1

⇔ A∗SAS : Cs → Cs is invertible,

where A∗SAS = (〈ai, aj〉)i,j∈S.

4AS = [aj1 , · · · , ajs ], S = {j1, ..., js}
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Measure the coherence

Let A = [a1, ..., aN ] be an m×N matrix with ‖aj‖2 = 1 ∀j.

Definition

1. Coherence of A is defined to be

µ(A) = max
i 6=j
|〈ai, aj〉|.

2. The `1-coherence function: for 1 ≤ s ≤ N − 1

µ1(s) := max
i∈[N ]

max{
∑
j∈S

|〈ai, aj〉|, S ⊂ [N ], |S| = s, i 6∈ S}

Question: How small of µ or µ1(s) leads to (P1) ⇔ (P0)?
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Theorem
We have: for all s-sparse vector x

(1− µ1(s− 1)) ‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + µ1(s− 1)) ‖x‖2
2.

Equivalently, the spectrum

σ(A∗SAS) ⊂ [1− µ1(s− 1), 1 + µ1(s− 1)]

for all S with |S| ≤ s. In particular, A∗SAS is invertible for all

|S| ≤ s if

µ1(s− 1) < 1.
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Mutual Incoherence ⇒ Exact Recovery

Theorem
If µ1(s) + µ1(s− 1) < 1 or µ < 1/(2s− 1), then both basis

pursuit and orthogonal matching pursuit are successful to

recover s-sparse vector.

Theorem
If 2µ1(s) + µ1(s− 1) < 1 or µ < 1/(3s− 1), then hard

thresholding pursuit can recover s-sparse vector x after s step.
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Matrices with small coherence

Def. The normalized column vectors (a1, · · · , aN) are

I Equiangular: if there exists a c such that

|〈ai, aj〉| = c for i 6= j.

I Tight frame: if there exists a λ > 0 s.t.

‖x‖2 = λ
∑N

j=1 |〈x, aj〉|2 for all x

Theorem
It holds µ ≥

√
N−m
m(N−1)

. The equality holds iff (a1, · · · , aN) are

equiangular tight frame.
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Small coherence

I (a1, · · · , aN) are equiangular implies N ≤ m2.

I The condition µ < 1/(2s− 1) is too restrictive in

applications. Because for the smallest conference,

I for large N , smallest coherence µ ∼ 1/
√
m,

I 1√
m
∼ µ < 1/(2s− 1) leads to m ≥ s2;

I The optimal m is m ∼ s ln(N/s) (from RIP). This means

that those which satisfy incoherence condition is very

limited.
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Restricted Isometry Property

I Def. δs(A) is the smallest δ such that

(1− δ)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ)‖x‖2.

for all s-sparse vector x.

I A satisfies RIP of order s if δs is small.

I Thms. Basis Pursuit, Orthogonal Matching Pursuit ,

Iterative Hard Pursuit and Hard Threasholding Pursuit

are successful if
BP IHP HTP OMP

δ2s < 0.6248 δ3s < 0.5773 δ3s < 0.5773 δ13s < 0.1666
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What kind of A satisfying RIP

I Given an m×N matrix A with N ≤ m2. δs(A) has

upper and lower estimates
√
cs/
√
m ≤ δs ≤ cs/

√
m

There is a sufficient gap between the two bounds.

I In fact, certain random matrices satisfy δs ≤ δ with high

probability provided

m ≥ C

δ2
s ln(eN/s)

I Further, any matrix A with δs ≤ δ requires

m ≥ Cδs ln(eN/s).
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What’s kind of matrices satisfying RIP

I Random matrices with

I iid Gaussian entries

I iid Bernoulli entries (+/− 1)

I iid subgaussian entries

I random Fourier ensemble

I random ensemble in bounded orthogonal systems

I In each case, m = O(s lnN), they satisfy RIP with very

high probability (1− e−Cm)..
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RPI for subgaussian matrices

Theorem
Let A be a subgaussian matrix. Then there exists a constant

C such that the RIP constant δs of the normalized matrix
1√
m
A satisfies δs ≤ δ with probability at least

1− 2 exp(−δ2m/(2C)), provided

m ≥ 2C

δ
s ln(eN/s).

I A random variable X is called subgaussian if

P (|X| ≥ t) ≤ βe−κt
2
.

I A random matrix A is called subgaussian if each entry is

iid subgaussian (mean 0, variance 1). 26 / 31



Random sampling in bounded orthonormal system

I Bounded orthonormal system: {φj : D 7→ C} be

orthonormal system in L2(D, ν), and ‖φj‖∞ ≤ K, ∀ j.

I {ti, i = 1, ...,m} are independent random variables with

range in D.

I A = (φj(ti))m×N is a random matrix.

Theorem
Let x be s-sparse and A be random sampling from BOS with

constant K. If

m ≥ CK2s ln2(6N/ε),

then with probability at least 1− ε, we have exact recovery

from basis pursuit.
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Concentration Lemma

Lemma (Concentration Inequality)

Let A be iid subgaussian m×N matrix. Then for any x ∈ RN

and for any δ ∈ (0, 1),

P
(
|m−1‖Ax‖2 − ‖x‖2| ≥ δ‖x‖2

)
≤ 2 exp(−ct2m),

where c depends on the subgaussian parameter only.
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Connection to Johnson-Lindenstrauss Lemma

Lemma (Johnson-Lindenstrauss)

Given x1, ..., xM ∈ RN arbitrary. Given δ > 0. If

m > Cδ−2 lnM , then there exists a linear map A : RN → Rm

such that

(1− δ)‖xj − x`‖2 ≤ ‖A(xj − x`)‖2 ≤ (1 + δ)‖xj − x`‖2

for any 1 ≤ j, ` ≤M .

Remarks

I It means we can project high dimension to low dimension

with A being nearly relative isometry.

I The construction is probabilistic.
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Optimization Algorithms

Problem to solve (Assume convexity)

I min f(x) subject to y = Ax

Main References:

I Boyd and Vandenberghe, Convex Optimization. This

book can be downloaded. It provides a thorough material

about optimization. Both of them have slides. They can

also be downloaded from websites.

I Neal Parikh and Stephen Boyd, Proximal Algorithms

I Vandenberghe, Convex Optimization (slides)
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Convex Optimization Algorithms

I Basic convex analysis

I Gradient methods and Newton’s methods

I Proximal algorithms

I Augmented Lagrange Method (ALM) and Alternative

Direction Method of Multipliers (ADMM)
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