
Basic Algorithms

I-Liang Chern

September 22, 2016

1 / 27

Three categories of Algorithms in CS

The noiseless compressive sensing problem

min
z∈CN

‖z‖0 subject to Az = y. (P0)

is a combinatorial optimization problem. One needs to search

over all possible subindex set S ⊂ [N]. The numbers of steps

are O(2N). This is NP-hard. We therefore look for other

algorithms. There are three categories of algorithms:

I I. Optimization methods

I II. Greedy methods

I III. Thresholding-based methods

2 / 27

I. Optimization methods-1

I I. Noiseless Case: Instead of solving

min
z∈CN

‖z‖0 subject to Az = y. (P0)

We solve the convex relaxation problem:

min
z∈CN

‖z‖1 subject to Az = y. (P1)

This is called basis pursuit. It is a convex optimization

problem. There are many algorithms available to solve

this constrained optimization problem. We will discuss

these algorithms in Chapter 15.

3 / 27

I. Optimization methods-2

I II. Noisy Case: Suppose the measurement has noise with

noise level η. Instead of solving

min
z∈CN

‖z‖0 subject to ‖Az− y‖ ≤ η

we solve the quadratically constrained basis pursuit:

min
z∈CN

‖z‖1 subject to ‖Az− y‖2 ≤ η.

4 / 27

Equivalence-1

There are three equivalent versions of such constrained

optimization optimization.

1. Quadratically constrained basis pursuit:

min ‖z‖1 subject to ‖Az = y‖2 ≤ η;

2. Basis pursuit denoising

minλ‖z‖1 + ‖Az− y‖2
2;

3. LASSO:

min ‖Az− y‖2 subject to ‖z‖1 ≤ τ.

5 / 27

Equivalence-2

(1) min ‖z‖1 subject to ‖Az− y‖2 ≤ η;

(2) minλ‖z‖1 + ‖Az− y‖2
2;

(3) min ‖Az− y‖2 subject to ‖z‖1 ≤ τ.

Proposition

I (2) ⇒ (1): If x is a minimizer of (2) with some λ > 0,

then ∃ ηx such that x is the minimizer of (1).

I (3) ⇒ (2): If x is a minimizer of (3) with some τ > 0,

then ∃λx > 0 such that x is a minimizer of (2)

I (1) ⇒ (3): If x is the unique minimizer of (1) with some

η > 0, then ∃ τx such that x is a unique minimizer of (3).

6 / 27

(2)⇒(1):

1. Set ηx = ‖Ax− y‖. Consider any z with ‖Az− y‖ ≤ η.

2. λ‖x‖1 + ‖Ax− y‖2 ≤ λ‖z‖1 + ‖Az− y‖2 ≤ λ‖z‖1 + ‖Ax− y‖2. This leads

to ‖x‖1 ≤ ‖z‖1.

(3) ⇒ (2):

λ is the Lagrange multiplier for constrained optimization.

(1) ⇒ (3):

If x is the unique minimizer of (1), then set ‖x‖1 = τ . For any ‖z‖1 ≤ τ , since
x is the unique minimizer satisfying the constraint, z cannot satisfy the

constraint. Thus, ‖Az− y‖2 > η ≥ ‖Ax− y‖2. Thus, x is the unique

minimizer of (3).

(3) ⇒ (1):

If x is the unique minimizer of (3), let us set ‖Ax− y‖2 = η and ‖x‖1 = τ .

For any z satisfying ‖Az− y‖2 ≤ η, it cannot satisfy the constraint of (3),

otherwise it violates the uniqueness of the minimizer of (3). Thus,

‖z‖1 > τ = ‖x‖1. We obtain x is the minimizer of (1).

7 / 27

Optimization methods-3: Dantzig Selector

I In statistics, there is another kind model selector called

Dantzig selector:

min ‖z‖1 subject to ‖A∗(Az− y)‖∞ ≤ τ.

I The residual r = Az− y should have small correlation

with all columns aj of the matrix A. Indeed,

‖A∗(Az− y)‖∞ = max
j
|〈aj, r〉|

I Dantzig selector is a convex optimization problem

[Candes-Tao].

I The theory for basis pursuit is also valid for Dantzig

selector.
8 / 27

II. Greedy Methods

I Suppose x an s-sparse vector and A an m×N matrix.

We are given the measurement y = Ax. We want to

recover x.

I We introduce two greedy methods1 2

I Orthogonal Matching Pursuit

I Compressive Sampling Matching Pursuit

I The goal is to find conditions on A such that these two

methods can recover x exactly from y.
1S. Mallat and Zhifeng Zhang, Matching Pursuirs with time-frequency

dictionaries (1993)
2J. Tropp and Anna Gilbert, Signal recovery from random

measurements via orthogonal matching pursuit (2007)
9 / 27

Matching Pursuits for Sparse Representation

Before introducing Orthogonal matching pursuit, we introduce

matching pursuit for sparse representation.

I Goal: given signal y and an over-complete dictionary

D = {a1, a2, · · · }, where ai with ‖ai‖ = 1 are called the

atoms of D. The matching pursuit looks for a

representation of y in terms of
∑

i xiai that is sparse and

approximates y.

I Matching pursuit will first find the one atom that has the

biggest inner product with the signal, then subtract the

contribution due to that atom, and repeat the process

until the signal is satisfactorily decomposed.

10 / 27

Matching Pursuit for orthonormal systems

I Input: A (orthonormal column vectors), y;

I Output: x#

I Initialization: r0 = y, x ≡ 0

I Iteration: stop when ‖rn‖ ≤ ε

I jn+1 := argmaxj∈[N]|〈aj , rn〉|
I xjn+1 = 〈rn,ajn+1〉
I rn+1 := rn − xjn+1ajn+1

11 / 27

Orthogonal Matching Pursuit

I Input: A (normalized column vectors ‖aj‖2 = 1) and y.

I Initialization: S0 = ∅, x0 = 0.

I Iteration: stop when n = n̄

I Sn+1 = Sn∪{jn+1}, jn+1 := argmaxj∈[N]|〈aj ,y−Axn〉|
I xn+1 := argminz{‖Az− y‖2, supp (z) ⊂ Sn+1}

I Output: x# = xn̄.

12 / 27

Remarks

I The step min{‖Az− y‖2, supp (z) ⊂ Sn+1} is

computationally costly. There are fast method to speed

up the computation: e.g. an efficient QR decomposition

for ASn when a new column is added;

I The choice of the index jn+1 is dictated by a greedy

strategy where one aims to reduce the L2-norm of the

residual y −Axn as much as possible at each iteration.

13 / 27

Lemma
Given S ⊂ [N], if

v := argmin
{
‖y −Az‖2

2, supp (z) ⊂ S
}

then for any j ∈ S, 〈aj,y −Av〉 = 0

Proof. This is the Euler-Lagrange equation for the

minimization problem. Indeed, for any h with supp (h) ⊂ S,

〈Ah,y −Av〉 = 0.

Taking h = ej with j ∈ S, we get

〈aj,y −Av〉 = 〈Aej,y −Av〉 = 0.

14 / 27

Lemma
Let A be a matrix with normalized column vectors, S ⊂ [N],

v ∈ CN with support in S, and j ∈ [N]. If

w := argmin {‖y −Az‖2 | supp (z) ⊂ S ∪ {j}}

then

‖y −Aw‖2
2 ≤ ‖y −Av‖2

2 − |〈aj,y −Av〉|2.

Proof. (for real case)

‖y −Aw‖2
2 ≤ min

t
‖y −A(v + tej)‖2

2

= min
t

(
‖y −Av‖2

2 − 2t〈y −Av, aj〉+ t2‖aj‖2
)

= ‖y −Av‖2
2 − |〈y −Av, aj〉|2. 15 / 27

Proposition

Given a matrix A ∈ Cm×N and S ⊂ [N] with |S| = s.

Every 0 6= x supported on S is uniquely recovered from

y = Ax after at most s iterations of OMP if and only if the

matrix AS is injective and

max
j∈S
|(A∗r)j| > max

`∈S̄
|(A∗r)`| (0.1)

for all r = Az with supp (z) ⊂ S.

Remark.

I (A∗r)j = 〈aj, r〉 is the correlation between the residual

and model vector aj.

16 / 27

Proof.

(⇒)

1. AS is injective: Suppose x1 and x2 have the same

support in S and Ax1 = Ax2. Then through OMP, xi

can be recovered from y exactly. Thus, they are identical.

2. Since the index chosen at the first iteration always stays

in the target support S, if r = Az for some z with

support exact S, then an index ` 6∈ S cannot be chosen

at the first iteration (otherwise, we cannot find x in s

iteration). That is,

|〈a`, r〉| < max
j∈S
|〈aj, r〉|

This shows

max
`∈S̄
|〈a`, r〉| < max

j∈S
|〈aj, r〉|.

17 / 27

(⇐):

1. Assuming Axn 6= y for n = 1, ..., s− 1, otherwise we

have done. We want to show that Axs = y.

2. First, we claim that Sn ⊂ S for n = 1, ..., s. This is

proven inductively in n. If 1 ≤ n ≤ s− 1 and Sn ⊂ S,

then

rn = y −Axn ∈ {Az | supp (z) ⊂ S}.

By our assumption, jn+1 ⊂ S. Hence

Sn+1 = Sn ∪ {jn+1} ⊂ S.

18 / 27

3 We claim that |Sn| = n for n = 1, ..., s. We have seen

that rn := Axn ⊥ aj, for j ∈ Sn. If jn+1 ⊂ Sn, then

max
j 6∈Sn
|〈rn, aj〉| ≤ max

j∈Sn
|〈rn, aj〉| = 0.

This implies rn = 0. Thus, |Sn| = n.

4 Since |S| = s and |Sn| = n, Sn ⊂ S. We conclude

Ss = S.

Remark. The above proposition is equivalent to

‖A†SAS̄‖1→1 < 1.

19 / 27

Proof.

1. A†S := (A∗SAS)−1A∗S exists iff AS is 1-1.

2. The condition (0.1) is equivalent to

‖A∗SASu‖∞ > ‖A∗S̄ASu‖∞ ∀ 0 6= u ∈ CN .

3. Let v = A∗SASu, then the above formula is

‖v‖∞ > ‖A∗S̄(A†S)∗v‖∞

This reads ‖A∗
S̄
(A†S)∗‖∞→∞ < 1. This is equivalent to

‖A†SAS̄‖1→1 < 1.

20 / 27

Weakness of OMP

1. You may not know s;

2. A may not satisfy (0.1):

max
j∈S
|(A∗r)j| > max

`∈S̄
|(A∗r)`|

3. If you choose a wrong index j, it can not be removed.

An improved algorithm called Compressive Sampling Matching

Pursuit.

21 / 27

Compressive Sampling Orthogonal Matching

Pursuit (CoSaMP)-1

I Input: A,y and s.

I Initialization: x0 = 0

I Iteration: repeat until a stopping criterion is met at

n = n̄:

I Un+1 = supp (xn) ∪ L2s(A
∗(y −Axn))

I un+1 = argminz{‖y −Az‖2, supp (z) ⊂ Un+1}.
I xn+1 = Hs(u

n+1).

I Output: x# = xn̄.

3
3Needel and Troop

22 / 27

CoSaMP-2

In CoSaMP, we use a notation called hard thresholding defined

as the follows.

I Given x ∈ CN , we define its best s sparse approximation

Hs(x) to be

I Ls(x) := index set of the s largest |xi|.
I Hs(x) := xLs(x).

I The operator Hs is called the hard thresholding operator.

4

4For review, see monograph [472] by Temlyakov, Tropp in [476], Mallat, and

Zhang in [145]
23 / 27

III. Thresholding based methods

I Basic thresholding method

I Iterative thresholding Method

I Hard thresholding pursuit

24 / 27

Basic Thresholding Method

1. Input: A, y and s

2. Procedure:
I S# = Ls(A

∗y);

I x# = min{‖y −Az‖2 | supp (z) ⊂ S#}
3. Output: x#.

Proposition

A vector x ∈ CN supported on a set S is recovered from

y = Ax via basic thresholding if and only if

min
j∈S
|〈aj,y〉| > max

`∈S̄
|〈a`,y〉|

Proof. S# = S means the above inequality. 25 / 27

Iterative Thresholding Method

1. Input: A, y and s

2. Initialization: x0 = 0

3. Repeat until a stopping criterion is met at n = n̄

xn+1 = Hs(x
n + A∗(y −Axn))

4. Output: x# = xn̄.

Remark:

I A∗(y −Ax) is the negative gradient of 1
2
‖y −Ax‖2.

I We can also replace A∗(y−Axn) by τnA∗(y−Axn) so

that it is the greatest decent.
26 / 27

Hard Thresholding Pursuit

1. Input: A, y and s

2. Initialization: x0 = 0

3. Repeat until a stopping criterion is met at n = n̄:

I Sn+1 = Ls(x
n +A∗(y −Axn))

I xn+1 = argmin{‖y −Az‖2 | supp (z) ⊂ Sn+1}

4. Output x# = xn̄.

27 / 27

